BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29723804)

  • 1. Differential UV-vis absorbance can characterize the reaction of organic matter with ClO
    Huang S; Gan W; Yan M; Zhang X; Zhong Y; Yang X
    Water Res; 2018 Aug; 139():442-449. PubMed ID: 29723804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or chloramination of natural organic matter.
    Yang X; Guo W; Lee W
    Chemosphere; 2013 Jun; 91(11):1477-85. PubMed ID: 23312737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorite formation during ClO
    Gan W; Huang S; Ge Y; Bond T; Westerhoff P; Zhai J; Yang X
    Water Res; 2019 Aug; 159():348-357. PubMed ID: 31108363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: effects on its optical and antioxidant properties.
    Wenk J; Aeschbacher M; Salhi E; Canonica S; von Gunten U; Sander M
    Environ Sci Technol; 2013 Oct; 47(19):11147-56. PubMed ID: 23978074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate.
    Yang X; Guo W; Zhang X; Chen F; Ye T; Liu W
    Water Res; 2013 Oct; 47(15):5856-64. PubMed ID: 23906778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of reductive inorganics and NOM on the formation of chlorite in the chlorine dioxide disinfection of drinking water.
    Yang B; Fang H; Chen B; Yang S; Ye Z; Yu J
    J Environ Sci (China); 2021 Jun; 104():225-232. PubMed ID: 33985725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing properties of triplet state organic matter (
    Kong Q; Pan Y; Lei X; Zhou Y; Lei Y; Peng J; Zhang X; Yin R; Shang C; Yang X
    Water Res; 2022 Oct; 225():119120. PubMed ID: 36126426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-sonication for controlling the formation of disinfection by-products in the ClO
    Chen J; Li J; Zhang X; Wu Z; Tyagi RD
    Environ Geochem Health; 2020 Mar; 42(3):849-861. PubMed ID: 31093815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of disinfection by-products formation during sequential or simultaneous disinfection of surface waters with chlorine dioxide and chlor(am)ine.
    Shi Y; Ling W; Qiang Z
    Environ Technol; 2013; 34(9-12):1191-8. PubMed ID: 24191452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of iodinated disinfection by-products during oxidation of iodide-containing waters with chlorine dioxide.
    Ye T; Xu B; Lin YL; Hu CY; Lin L; Zhang TY; Gao NY
    Water Res; 2013 Jun; 47(9):3006-14. PubMed ID: 23561492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and mechanistic understanding of chlorite oxidation during chlorination: Optimization of ClO
    Rougé V; Lee Y; von Gunten U; Allard S
    Water Res; 2022 Jul; 220():118515. PubMed ID: 35700645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradability of organic by-products after natural organic matter oxidation with ClO2--case study.
    Raczyk-Stanisławiak U; Swietlik J; Dabrowska A; Nawrocki J
    Water Res; 2004 Feb; 38(4):1044-54. PubMed ID: 14769425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of wastewater and polymer derived N-nitrosodimethylamine precursors with integrated use of chlorine and chlorine dioxide.
    Uzun H; Kim D; Karanfil T
    Chemosphere; 2019 Feb; 216():224-233. PubMed ID: 30384291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosing low-level ferrous iron in coagulation enhances the removal of micropollutants, chlorite and chlorate during advanced water treatment.
    Cassol GS; Shang C; Li J; Ling L; Yang X; Yin R
    J Environ Sci (China); 2022 Jul; 117():119-128. PubMed ID: 35725064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated degradation of micro-pollutant by combined UV and chlorine dioxide: Unexpected inhibition of chlorite formation.
    Wang Y; Sun W; Dong H; Qiang Z
    Environ Pollut; 2023 Nov; 337():122600. PubMed ID: 37739255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photolysis of chlorite by solar light: An overlooked mitigation pathway for chlorite and micropollutants.
    Yang T; Zhu M; An L; Zeng G; Fan C; Li J; Jiang J; Ma J
    Water Res; 2023 Apr; 233():119809. PubMed ID: 36878179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanisms of chlorine dioxide oxidation of tryptophan.
    Stewart DJ; Napolitano MJ; Bakhmutova-Albert EV; Margerum DW
    Inorg Chem; 2008 Mar; 47(5):1639-47. PubMed ID: 18254588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of ClO2 demand by ClO2 oxidation and subsequent GAC filtration.
    Swietlik J; Raczyk-Stanisłwiak U; Biłzor S; Ilecki W; Nawrocki J
    Water Res; 2003 Nov; 37(19):4693-702. PubMed ID: 14568056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced chlorine dioxide decay in the presence of metal oxides: relevance to drinking water distribution systems.
    Liu C; von Gunten U; Croué JP
    Environ Sci Technol; 2013 Aug; 47(15):8365-72. PubMed ID: 23796229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.
    Sorlini S; Gialdini F; Biasibetti M; Collivignarelli C
    Water Res; 2014 May; 54():44-52. PubMed ID: 24534637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.