These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29723817)

  • 1. Extracellular matrix-coated polyethersulfone-TPGS hollow fiber membranes showing improved biocompatibility and uremic toxins removal for bioartificial kidney application.
    Modi A; Verma SK; Bellare J
    Colloids Surf B Biointerfaces; 2018 Jul; 167():457-467. PubMed ID: 29723817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene oxide nanosheets and d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) doping improves biocompatibility and ultrafiltration in polyethersulfone hollow fiber membranes.
    Modi A; Verma SK; Bellare J
    J Colloid Interface Sci; 2017 Oct; 504():86-100. PubMed ID: 28527829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene oxide-doping improves the biocompatibility and separation performance of polyethersulfone hollow fiber membranes for bioartificial kidney application.
    Modi A; Verma SK; Bellare J
    J Colloid Interface Sci; 2018 Mar; 514():750-759. PubMed ID: 29316531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionally coated polyethersulfone hollow fiber membranes: A substrate for enhanced HepG2/C3A functions.
    Verma SK; Modi A; Singh AK; Teotia R; Kadam S; Bellare J
    Colloids Surf B Biointerfaces; 2018 Apr; 164():358-369. PubMed ID: 29413617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophilic ZIF-8 decorated GO nanosheets improve biocompatibility and separation performance of polyethersulfone hollow fiber membranes: A potential membrane material for bioartificial liver application.
    Modi A; Verma SK; Bellare J
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():524-540. PubMed ID: 30033284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved hemodialysis with hemocompatible polyethersulfone hollow fiber membranes: In vitro performance.
    Verma SK; Modi A; Singh AK; Teotia R; Bellare J
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1286-1298. PubMed ID: 28636168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biocompatibility and separation performance of antioxidative polysulfone/vitamin E TPGS composite hollow fiber membranes.
    Dahe GJ; Teotia RS; Kadam SS; Bellare JR
    Biomaterials; 2011 Jan; 32(2):352-65. PubMed ID: 20888631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyethersulfone-carbon nanotubes composite hollow fiber membranes with improved biocompatibility for bioartificial liver.
    Verma SK; Modi A; Bellare J
    Colloids Surf B Biointerfaces; 2019 Sep; 181():890-895. PubMed ID: 31382337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-Functionalized Poly(Ether Sulfone) Composite Hollow Fiber Membranes with Improved Biocompatibility and Uremic Toxins Clearance for Bioartificial Kidney Application.
    Modi A; Verma SK; Bellare J
    ACS Appl Bio Mater; 2020 Mar; 3(3):1589-1597. PubMed ID: 35021649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient separation of biological macromolecular proteins by polyethersulfone hollow fiber ultrafiltration membranes modified with Fe
    Modi A; Bellare J
    Int J Biol Macromol; 2019 Aug; 135():798-807. PubMed ID: 31150674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelialization and characterization of titanium dioxide-coated gas-exchange membranes for application in the bioartificial lung.
    Pflaum M; Kühn-Kauffeldt M; Schmeckebier S; Dipresa D; Chauhan K; Wiegmann B; Haug RJ; Schein J; Haverich A; Korossis S
    Acta Biomater; 2017 Mar; 50():510-521. PubMed ID: 27956361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane.
    Schophuizen CM; De Napoli IE; Jansen J; Teixeira S; Wilmer MJ; Hoenderop JG; Van den Heuvel LP; Masereeuw R; Stamatialis D
    Acta Biomater; 2015 Mar; 14():22-32. PubMed ID: 25527093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin E as a functional and biocompatibility modifier of synthetic hemodialyzer membranes: an overview of the literature on vitamin E-modified hemodialyzer membranes.
    Piroddi M; Pilolli F; Aritomi M; Galli F
    Am J Nephrol; 2012; 35(6):559-72. PubMed ID: 22677717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility of modified polyethersulfone membranes by blending an amphiphilic triblock co-polymer of poly(vinyl pyrrolidone)-b-poly(methyl methacrylate)-b-poly(vinyl pyrrolidone).
    Ran F; Nie S; Zhao W; Li J; Su B; Sun S; Zhao C
    Acta Biomater; 2011 Sep; 7(9):3370-81. PubMed ID: 21658478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of polyethersulfone highflux hemodialysis membrane in vitro and in vivo.
    Su BH; Fu P; Li Q; Tao Y; Li Z; Zao HS; Zhao CS
    J Mater Sci Mater Med; 2008 Feb; 19(2):745-51. PubMed ID: 17619985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactobionic acid-functionalized polyethersulfone hollow fiber membranes promote HepG2 attachment and function.
    Verma SK; Modi A; Dravid A; Bellare J
    RSC Adv; 2018 Aug; 8(51):29078-29088. PubMed ID: 35539695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo evaluation of the biocompatibility of surface modified hemodialysis polysulfone hollow fibers in rat.
    Dahe GJ; Kadam SS; Sabale SS; Kadam DP; Sarkate LB; Bellare JR
    PLoS One; 2011; 6(10):e25236. PubMed ID: 22046236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Polyethersulfone hollow fiber membrane for hemodialysis--preparation and evaluation].
    Jia Y; Lu X; Wu C; Xia Z; Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Feb; 27(1):91-6. PubMed ID: 20337032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilizing argatroban and mPEG-NH
    Dai Y; Dai S; Xie X; Ning J
    J Biomater Sci Polym Ed; 2019 Jun; 30(8):608-628. PubMed ID: 30907698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of human cells on polyethersulfone (PES) hollow fiber membranes.
    Unger RE; Huang Q; Peters K; Protzer D; Paul D; Kirkpatrick CJ
    Biomaterials; 2005 May; 26(14):1877-84. PubMed ID: 15576161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.