These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29723839)

  • 21. Monitoring of land subsidence due to excessive groundwater extraction using small baseline subset technique in Konya, Turkey.
    Orhan O
    Environ Monit Assess; 2021 Mar; 193(4):174. PubMed ID: 33751245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-Dimensional Numerical Investigation of Pore Water Pressure and Deformation of Pumped Aquifer Systems.
    Zhang Y; Yan X; Yang T; Wu J; Wu J
    Ground Water; 2020 Mar; 58(2):278-290. PubMed ID: 31131880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying aquifer type in fractured rock aquifers using harmonic analysis.
    Rahi KA; Halihan T
    Ground Water; 2013; 51(1):76-82. PubMed ID: 22463080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations.
    Castellazzi P; Martel R; Galloway DL; Longuevergne L; Rivera A
    Ground Water; 2016 Nov; 54(6):768-780. PubMed ID: 27576068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radionuclides as natural tracers of the interaction between groundwater and surface water in the River Andarax, Spain.
    Navarro-Martinez F; Salas Garcia A; Sánchez-Martos F; Baeza Espasa A; Molina Sánchez L; Rodríguez Perulero A
    J Environ Radioact; 2017 Dec; 180():9-18. PubMed ID: 28982052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of InSAR data for measuring land subsidence induced by groundwater withdrawal and climate change in Ardabil Plain, Iran.
    Ghorbani Z; Khosravi A; Maghsoudi Y; Mojtahedi FF; Javadnia E; Nazari A
    Sci Rep; 2022 Aug; 12(1):13998. PubMed ID: 35978063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New insights into earthquake precursors from InSAR.
    Moro M; Saroli M; Stramondo S; Bignami C; Albano M; Falcucci E; Gori S; Doglioni C; Polcari M; Tallini M; Macerola L; Novali F; Costantini M; Malvarosa F; Wegmüller U
    Sci Rep; 2017 Sep; 7(1):12035. PubMed ID: 28931843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monitoring Land Subsidence in Wuhan City (China) using the SBAS-InSAR Method with Radarsat-2 Imagery Data.
    Zhang Y; Liu Y; Jin M; Jing Y; Liu Y; Liu Y; Sun W; Wei J; Chen Y
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30759841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using Sentinel-1 and GRACE satellite data to monitor the hydrological variations within the Tulare Basin, California.
    Vasco DW; Kim KH; Farr TG; Reager JT; Bekaert D; Sangha SS; Rutqvist J; Beaudoing HK
    Sci Rep; 2022 Mar; 12(1):3867. PubMed ID: 35264619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Land Subsidence Related to Coal Mining in China Revealed by L-band InSAR Analysis.
    Zheng L; Zhu L; Wang W; Guo L; Chen B
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32059589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using 14C and 3H to delineate a recharge 'window' into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia.
    Meredith K; Cendón DI; Pigois JP; Hollins S; Jacobsen G
    Sci Total Environ; 2012 Jan; 414():456-69. PubMed ID: 22104381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface Subsidence Analysis by Multi-Temporal InSAR and GRACE: A Case Study in Beijing.
    Guo J; Zhou L; Yao C; Hu J
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of Geophysical and Remote Sensing Data for Assessment of Aquifer Depletion and Related Land Deformation.
    Othman A; Sultan M; Becker R; Alsefry S; Alharbi T; Gebremichael E; Alharbi H; Abdelmohsen K
    Surv Geophys; 2018; 39(3):543-566. PubMed ID: 31258224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of groundwater residence time using environmental radioisotopes (14C,T) in carbonate aquifers, southern Poland.
    Samborska K; Różkowski A; Małoszewski P
    Isotopes Environ Health Stud; 2013; 49(1):73-97. PubMed ID: 22607326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Can river flow prevent land subsidence in urban areas?
    Sharifi A; Khodaei B; Ahrari A; Hashemi H; Torabi Haghighi A
    Sci Total Environ; 2024 Mar; 917():170557. PubMed ID: 38296077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China.
    Liu F; Song X; Yang L; Han D; Zhang Y; Ma Y; Bu H
    Sci Total Environ; 2015 Dec; 538():327-40. PubMed ID: 26312407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Groundwater Recharge and Flow in California's San Joaquin Valley From InSAR-Observed Surface Deformation.
    Neely WR; Borsa AA; Burney JA; Levy MC; Silverii F; Sneed M
    Water Resour Res; 2021 Apr; 57(4):e2020WR028451. PubMed ID: 33867591
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detecting Land Subsidence in Shanghai by PS-Networking SAR Interferometry.
    Liu G; Luo X; Chen Q; Huang D; Ding X
    Sensors (Basel); 2008 Aug; 8(8):4725-4741. PubMed ID: 27873782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring and analysis of ground subsidence in Shanghai based on PS-InSAR and SBAS-InSAR technologies.
    Zhang Z; Hu C; Wu Z; Zhang Z; Yang S; Yang W
    Sci Rep; 2023 May; 13(1):8031. PubMed ID: 37198287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.