BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2972398)

  • 1. Regulation of the distribution of carotenoid droplets in goldfish xanthophores and possible implication to secretory processes.
    Tchen TT; Lo SJ; Lynch TJ; Palazzo RE; Peng G; Walker GR; Wu BY; Yu FX; Taylor JD
    Cell Motil Cytoskeleton; 1988; 10(1-2):143-52. PubMed ID: 2972398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin-dependent carotenoid droplet dispersion in permeabilized cultured goldfish xanthophores.
    Yu FX; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1990; 15(3):139-46. PubMed ID: 2157551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial characterization of a carotenoid droplet ATPase and its possible significance in carotenoid droplet dispersion in goldfish xanthophores.
    Wu BY; Yu FX; Lynch TJ; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1990; 15(3):147-55. PubMed ID: 2138933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunofluorescence evidence for cytoskeletal rearrangement accompanying pigment redistribution in goldfish xanthophores.
    Walker GR; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1989; 14(4):458-68. PubMed ID: 2560413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification of anterogin, a protein factor necessary for the dispersion of carotenoid droplets in permeabilized xanthophores of goldfish.
    Zeng ZC; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1989; 14(4):485-90. PubMed ID: 2533883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cAMP-independent and cAMP-dependent protein phosphorylations by isolated goldfish xanthophore cytoskeletons: evidence for the association of cytoskeleton with a carotenoid droplet protein.
    Palazzo RE; Lynch TJ; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1989; 13(1):21-9. PubMed ID: 2543507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rearrangements of pterinosomes and cytoskeleton accompanying pigment dispersion in goldfish xanthophores.
    Palazzo RE; Lynch TJ; Lo SJ; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1989; 13(1):9-20. PubMed ID: 2543509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological studies on the mechanisms of pigmentary organelle transport in fish xanthophores and melanophores.
    Kimler VA; Taylor JD
    Microsc Res Tech; 2002 Sep; 58(6):470-80. PubMed ID: 12242704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of microtubules in pigment translocation in goldfish xanthophores.
    Chen JS; Wang SM
    Arch Histol Cytol; 1993 Dec; 56(5):451-8. PubMed ID: 8129980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural immunogold localization of some organelle-transport relevant proteins in wholemounted permeabilized nonextracted goldfish xanthophores.
    Kimler VA; Taylor JD
    Pigment Cell Res; 1995 Apr; 8(2):75-82. PubMed ID: 7659680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural demonstration of hormone-induced movement of carotenoid droplets and endoplasmic reticulum in xanthophores of the goldfish, Carassius auratus L.
    Obika M; Lo SJ; Tchen TT; Taylor JD
    Cell Tissue Res; 1978 Jul; 190(3):409-16. PubMed ID: 210950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of pigment organelle translocation. II. Participation of a cAMP-dependent protein kinase.
    Lynch TJ; Wu BY; Taylor JD; Tchen TT
    J Biol Chem; 1986 Mar; 261(9):4212-6. PubMed ID: 3005326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hormone-induced filopodium formation and movement of pigment, carotenoid droplets, into newly formed filopodia.
    Lo SJ; Tchen TT; Taylor JD
    Cell Tissue Res; 1980; 210(3):371-82. PubMed ID: 6250703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein phosphorylation and the two stages of pigment organelle dispersion in permeabilized xanthophores: organelle protein phosphorylation alone supports only the first stage.
    Yu FX; Wu BY; Taylor JD; Tchen TT
    Biochem Biophys Res Commun; 1989 Jun; 161(2):626-32. PubMed ID: 2544166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a novel filament system in goldfish xanthophores.
    Wang SM; Chen JS; Fong TH; Hsu SY; Lim SS
    Cell Motil Cytoskeleton; 1997; 36(3):216-27. PubMed ID: 9067617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule aster formation by dynein-dependent organelle transport.
    Nilsson H; Wallin M
    Cell Motil Cytoskeleton; 1998; 41(3):254-63. PubMed ID: 9829779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.
    Milograna SR; Ribeiro MR; Baqui MM; McNamara JC
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():90-101. PubMed ID: 25182860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of the carotenoid droplet protein p57 by the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase and the effect of fluoride.
    Yang CF; Zeng ZC; Chou SC; Yu FX; Taylor JD; Tchen TT
    Pigment Cell Res; 1989; 2(5):408-13. PubMed ID: 2555810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of microtubules in the formation of carotenoid droplet aggregate in goldfish xanthophores.
    Tchen TT; Allen RD; Lo SC; Lynch TJ; Palazzo RE; Hayden J; Walker GR; Taylor JD
    Ann N Y Acad Sci; 1986; 466():887-94. PubMed ID: 3460460
    [No Abstract]   [Full Text] [Related]  

  • 20. Local light stimulation of isolated chromatophores of the sea urchin Centrostephanus longispinus.
    Gras H
    Eur J Cell Biol; 1981 Feb; 23(2):258-66. PubMed ID: 7202417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.