These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 29723996)

  • 1. Optimal Sub-Band Analysis Based on the Envelope Power Spectrum for Effective Fault Detection in Bearing under Variable, Low Speeds.
    Nguyen HN; Kim J; Kim JM
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29723996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bearing Fault Detection Based on Empirical Wavelet Transform and Correlated Kurtosis by Acoustic Emission.
    Gao Z; Lin J; Wang X; Xu X
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Reliable Health Indicator for Fault Prognosis of Bearings.
    Duong BP; Khan SA; Shon D; Im K; Park J; Lim DS; Jang B; Kim JM
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negentropy Spectrum Decomposition and Its Application in Compound Fault Diagnosis of Rolling Bearing.
    Xu Y; Chen J; Ma C; Zhang K; Cao J
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiband Envelope Spectra Extraction for Fault Diagnosis of Rolling Element Bearings.
    Duan J; Shi T; Zhou H; Xuan J; Zhang Y
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29738474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Detection of Motor Bearing Fault with Maximal Overlap Discrete Wavelet Packet Transform and Teager Energy Adaptive Spectral Kurtosis.
    Yang DM
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-fault detection of rolling element bearings under harsh working condition using IMF-based adaptive envelope order analysis.
    Zhao M; Lin J; Xu X; Li X
    Sensors (Basel); 2014 Oct; 14(11):20320-46. PubMed ID: 25353982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of EEMD and improved frequency band entropy in bearing fault feature extraction.
    Li H; Liu T; Wu X; Chen Q
    ISA Trans; 2019 May; 88():170-185. PubMed ID: 30558907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal Resonant Band Demodulation Based on an Improved Correlated Kurtosis and Its Application in Bearing Fault Diagnosis.
    Chen X; Zhang B; Feng F; Jiang P
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28208820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved Autogram and MOMEDA method to detect weak compound fault in rolling bearings.
    Xie X; Yang Z; Zhang L; Zeng G; Wang X; Zhang P; Chen G
    Math Biosci Eng; 2022 Jul; 19(10):10424-10444. PubMed ID: 36032001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Early Fault Diagnosis Method of Rolling Bearings on the Basis of Adaptive Frequency Window and Sparse Coding Shrinkage.
    Wan S; Peng B
    Entropy (Basel); 2019 Jun; 21(6):. PubMed ID: 33267298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tacholess envelope order analysis and its application to fault detection of rolling element bearings with varying speeds.
    Zhao M; Lin J; Xu X; Lei Y
    Sensors (Basel); 2013 Aug; 13(8):10856-75. PubMed ID: 23959244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Method of Frequency Band Selection for Squared Envelope Analysis for Fault Diagnosing of Rolling Element Bearings in a Locomotive Powertrain.
    Xu L; Chatterton S; Pennacchi P
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Fault Detection Method for Rolling Bearings Based on Non-Stationary Vibration Signature Analysis.
    Zhen D; Guo J; Xu Y; Zhang H; Gu F
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incipient fault diagnosis in bearings under variable speed conditions using multiresolution analysis and a weighted committee machine.
    Tra V; Kim J; Khan SA; Kim JM
    J Acoust Soc Am; 2017 Jul; 142(1):EL35. PubMed ID: 28764477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enhanced diagnosis method for weak fault features of bearing acoustic emission signal based on compressed sensing.
    Wang C; Liu C; Liao M; Yang Q
    Math Biosci Eng; 2021 Feb; 18(2):1670-1688. PubMed ID: 33757204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-objective Informative Frequency Band Selection Based on Negentropy-induced Grey Wolf Optimizer for Fault Diagnosis of Rolling Element Bearings.
    Gu X; Yang S; Liu Y; Hao R; Liu Z
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32225091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet.
    Shao H; Jiang H; Wang F; Wang Y
    ISA Trans; 2017 Jul; 69():187-201. PubMed ID: 28502383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning-Based Bearing Fault Diagnosis Method for Embedded Systems.
    Pham MT; Kim JM; Kim CH
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33276483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution.
    Jia F; Lei Y; Shan H; Lin J
    Sensors (Basel); 2015 Nov; 15(11):29363-77. PubMed ID: 26610501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.