BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 29724006)

  • 21. Wrist sensor-based tremor severity quantification in Parkinson's disease using convolutional neural network.
    Kim HB; Lee WW; Kim A; Lee HJ; Park HY; Jeon HS; Kim SK; Jeon B; Park KS
    Comput Biol Med; 2018 Apr; 95():140-146. PubMed ID: 29500984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel machine learning-enabled framework for instantaneous heart rate monitoring from motion-artifact-corrupted electrocardiogram signals.
    Zhang Q; Zhou D; Zeng X
    Physiol Meas; 2016 Nov; 37(11):1945-1967. PubMed ID: 27681602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram.
    Urtnasan E; Park JU; Lee KJ
    Physiol Meas; 2018 Jun; 39(6):065003. PubMed ID: 29794342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. End-to-end sensor fusion and classification of atrial fibrillation using deep neural networks and smartphone mechanocardiography.
    Mehrang S; Jafari Tadi M; Knuutila T; Jaakkola J; Jaakkola S; Kiviniemi T; Vasankari T; Airaksinen J; Koivisto T; Pänkäälä M
    Physiol Meas; 2022 May; 43(5):. PubMed ID: 35413698
    [No Abstract]   [Full Text] [Related]  

  • 25. A real-time approach for heart rate monitoring using a Hilbert transform in seismocardiograms.
    Jafari Tadi M; Lehtonen E; Hurnanen T; Koskinen J; Eriksson J; Pänkäälä M; Teräs M; Koivisto T
    Physiol Meas; 2016 Nov; 37(11):1885-1909. PubMed ID: 27681033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using Adjacent Non-Intrusive ECG Sensors.
    Choi M; Jeong JJ; Kim SH; Kim SW
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27196910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals.
    Tan JH; Hagiwara Y; Pang W; Lim I; Oh SL; Adam M; Tan RS; Chen M; Acharya UR
    Comput Biol Med; 2018 Mar; 94():19-26. PubMed ID: 29358103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-Headed Conv-LSTM Network for Heart Rate Estimation during Daily Living Activities.
    Wilkosz M; Szczęsna A
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks.
    Xia P; Hu J; Peng Y
    Artif Organs; 2018 May; 42(5):E67-E77. PubMed ID: 29068076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantifying and Reducing Motion Artifacts in Wearable Seismocardiogram Measurements During Walking to Assess Left Ventricular Health.
    Javaid AQ; Ashouri H; Dorier A; Etemadi M; Heller JA; Roy S; Inan OT
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1277-1286. PubMed ID: 27541330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-contact heart vibration measurement using computer vision-based seismocardiography.
    Rahman MM; Cook J; Taebi A
    Sci Rep; 2023 Jul; 13(1):11787. PubMed ID: 37479720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using single lead electrocardiograms of variable length.
    Kamaleswaran R; Mahajan R; Akbilgic O
    Physiol Meas; 2018 Mar; 39(3):035006. PubMed ID: 29369044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images.
    Ma J; Wu F; Jiang T; Zhu J; Kong D
    Med Phys; 2017 May; 44(5):1678-1691. PubMed ID: 28186630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fuzzy Computing Model of Activity Recognition on WSN Movement Data for Ubiquitous Healthcare Measurement.
    Chiang SY; Kan YC; Chen YS; Tu YC; Lin HC
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27918482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Ensemble of Fine-Tuned Convolutional Neural Networks for Medical Image Classification.
    Kumar A; Kim J; Lyndon D; Fulham M; Feng D
    IEEE J Biomed Health Inform; 2017 Jan; 21(1):31-40. PubMed ID: 28114041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Resolution Seismocardiogram Acquisition and Analysis System.
    Leitão F; Moreira E; Alves F; Lourenço M; Azevedo O; Gaspar J; Rocha LA
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep ECGNet: An Optimal Deep Learning Framework for Monitoring Mental Stress Using Ultra Short-Term ECG Signals.
    Hwang B; You J; Vaessen T; Myin-Germeys I; Park C; Zhang BT
    Telemed J E Health; 2018 Oct; 24(10):753-772. PubMed ID: 29420125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiac monitoring of dogs via smartphone mechanocardiography: a feasibility study.
    Lahdenoja O; Hurnanen T; Kaisti M; Koskinen J; Tuominen J; Vähä-Heikkilä M; Parikka L; Wiberg M; Koivisto T; Pänkäälä M
    Biomed Eng Online; 2019 Apr; 18(1):47. PubMed ID: 31014339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptive convolutional dictionary learning for denoising seismocardiogram to enhance the classification performance of aortic stenosis.
    Xu B; Jiang F; Zhu Z; Meng H; Xu L
    Comput Biol Med; 2024 Jan; 168():107763. PubMed ID: 38056208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A deep learning-based decision support system for diagnosis of OSAS using PTT signals.
    Arslan Tuncer S; Akılotu B; Toraman S
    Med Hypotheses; 2019 Jun; 127():15-22. PubMed ID: 31088639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.