These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29724099)

  • 1. Desorption of Benzene, 1,3,5-Trifluorobenzene, and Hexafluorobenzene from a Graphene Surface: The Effect of Lateral Interactions on the Desorption Kinetics.
    Smith RS; Kay BD
    J Phys Chem Lett; 2018 May; 9(10):2632-2638. PubMed ID: 29724099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Desorption Kinetics of Benzene and Cyclohexane from a Graphene Surface.
    Smith RS; Kay BD
    J Phys Chem B; 2018 Jan; 122(2):587-594. PubMed ID: 28677971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Desorption Kinetics of Carbon Dioxide from a Graphene-Covered Pt(111) Surface.
    Smith RS; Kay BD
    J Phys Chem A; 2019 Apr; 123(15):3248-3254. PubMed ID: 30913386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desorption kinetics of methanol, ethanol, and water from graphene.
    Smith RS; Matthiesen J; Kay BD
    J Phys Chem A; 2014 Sep; 118(37):8242-50. PubMed ID: 24654652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces.
    Smith RS; May RA; Kay BD
    J Phys Chem B; 2016 Mar; 120(8):1979-87. PubMed ID: 26595145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption energies, inter-adsorbate interactions, and the two binding sites within monolayer benzene on Ag(111).
    Rockey TJ; Yang M; Dai HL
    J Phys Chem B; 2006 Oct; 110(40):19973-8. PubMed ID: 17020384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Edge-on bonding of benzene molecules in the second adsorbed layer on Cu(110).
    Lee J; Dougherty DB; Yates JT
    J Phys Chem B; 2006 Aug; 110(32):15645-9. PubMed ID: 16898704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidation of temperature-programmed desorption of high-coverage hydrogen on Pt(211), Pt(221), Pt(533) and Pt(553) based on density functional theory calculations.
    Kolb MJ; Garden AL; Badan C; Garrido Torres JA; Skúlason E; Juurlink LBF; Jónsson H; Koper MTM
    Phys Chem Chem Phys; 2019 Aug; 21(31):17142-17151. PubMed ID: 31339149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption, desorption, and clustering of H2O on Pt111.
    Daschbach JL; Peden BM; Smith RS; Kay BD
    J Chem Phys; 2004 Jan; 120(3):1516-23. PubMed ID: 15268278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of desorption and decomposition kinetics of formic acid on Cu(111): The importance of hydrogen bonding between adsorbed species.
    Shiozawa Y; Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J
    J Chem Phys; 2015 Dec; 143(23):234707. PubMed ID: 26696070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reflection absorption infrared spectroscopy and temperature-programmed desorption studies of the adsorption and desorption of amorphous and crystalline water on a graphite surface.
    Bolina AS; Wolff AJ; Brown WA
    J Phys Chem B; 2005 Sep; 109(35):16836-45. PubMed ID: 16853142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the intramolecular vibrational energy redistribution dynamics of aromatic complexes: A comparative study on C6H6-C6H5Cl, C6H6-C6H3Cl3, C6H6-C6Cl6 and C6H6-C6H5F, C6H6-C6H3F3, C6H6-C6F6.
    Deb B; Mahanta H; Baruah NP; Khardewsaw M; Paul AK
    J Chem Phys; 2024 Jan; 160(2):. PubMed ID: 38197444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water adsorption, desorption, and clustering on FeO(111).
    Daschbach JL; Dohnalek Z; Liu SR; Smith RS; Kay BD
    J Phys Chem B; 2005 May; 109(20):10362-70. PubMed ID: 16852256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetone and water on TiO2(110): competition for sites.
    Henderson MA
    Langmuir; 2005 Apr; 21(8):3443-50. PubMed ID: 15807586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of new TPD analysis techniques in the evaluation of second order desorption kinetics of cyanogen from Cu(001).
    Ciftlikli EZ; Lee EY; Lallo J; Rangan S; Senanayake SD; Hinch BJ
    Langmuir; 2010 Dec; 26(24):18742-9. PubMed ID: 21090656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the coverage dependent behaviour of CO on Gd/Pt(111).
    Ulrikkeholm ET; Hansen MH; Rossmeisl J; Chorkendorff I
    Phys Chem Chem Phys; 2016 Nov; 18(43):29732-29739. PubMed ID: 27759139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFT and TPD study of the role of steps in the adsorption of CO on copper: Cu(4 1 0) versus Cu(1 0 0).
    Kokalj A; Makino T; Okada M
    J Phys Condens Matter; 2017 May; 29(19):194001. PubMed ID: 28291017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Temperature-Programmed Desorption.
    Murphy CJ; Ardy Nugroho FA; Härelind H; Hellberg L; Langhammer C
    Nano Lett; 2021 Jan; 21(1):353-359. PubMed ID: 33337897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the interaction of hydrogen chloride with low-temperature water ice surfaces using thermal and electron-stimulated desorption.
    Olanrewaju BO; Herring-Captain J; Grieves GA; Aleksandrov A; Orlando TM
    J Phys Chem A; 2011 Jun; 115(23):5936-42. PubMed ID: 21548613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-adsorption of water and hydrogen on Ni(111).
    Shan J; Aarts JF; Kleyn AW; Juurlink LB
    Phys Chem Chem Phys; 2008 Aug; 10(32):4994-5003. PubMed ID: 18688545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.