These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29724158)

  • 1. Calcium-Infiltrated Biphasic Hydroxyapatite Scaffolds for Human Hematopoietic Stem Cell Culture.
    Zhang Q; Gerlach JC; Nettleship I; Schmelzer E
    Tissue Eng Part A; 2018 Nov; 24(21-22):1563-1573. PubMed ID: 29724158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Calcium-Infiltrated Hydroxyapatite Scaffolds on the Hematopoietic Fate of Human Umbilical Vein Endothelial Cells.
    Zhang Q; Gerlach JC; Schmelzer E; Nettleship I
    J Vasc Res; 2017; 54(6):376-385. PubMed ID: 29166642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-cultured hBMSCs and HUVECs on human bio-derived bone scaffolds provide support for the long-term ex vivo culture of HSC/HPCs.
    Huang X; Li C; Zhu B; Wang H; Luo X; Wei L
    J Biomed Mater Res A; 2016 May; 104(5):1221-30. PubMed ID: 26779960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary human osteoblast culture on 3D porous collagen-hydroxyapatite scaffolds.
    Jones GL; Walton R; Czernuszka J; Griffiths SL; El Haj AJ; Cartmell SH
    J Biomed Mater Res A; 2010 Sep; 94(4):1244-50. PubMed ID: 20694991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term three-dimensional perfusion culture of human adult bone marrow mononuclear cells in bioreactors.
    Schmelzer E; Finoli A; Nettleship I; Gerlach JC
    Biotechnol Bioeng; 2015 Apr; 112(4):801-10. PubMed ID: 25335987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compositional dependence of hematopoietic stem cells expansion on bioceramic composite scaffolds for bone tissue engineering.
    Mishra S; Rajyalakshmi A; Balasubramanian K
    J Biomed Mater Res A; 2012 Sep; 100(9):2483-91. PubMed ID: 22615189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.
    Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H
    Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells.
    Finoli A; Schmelzer E; Over P; Nettleship I; Gerlach JC
    Biomed Res Int; 2016; 2016():6040146. PubMed ID: 27403430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells.
    Raic A; Rödling L; Kalbacher H; Lee-Thedieck C
    Biomaterials; 2014 Jan; 35(3):929-40. PubMed ID: 24176196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.
    Xie L; Yu H; Yang W; Zhu Z; Yue L
    J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondrogenic regeneration using bone marrow clots and a porous polycaprolactone-hydroxyapatite scaffold by three-dimensional printing.
    Yao Q; Wei B; Liu N; Li C; Guo Y; Shamie AN; Chen J; Tang C; Jin C; Xu Y; Bian X; Zhang X; Wang L
    Tissue Eng Part A; 2015 Apr; 21(7-8):1388-97. PubMed ID: 25530453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts for bone regeneration.
    Lu Z; Wang G; Roohani-Esfahani I; Dunstan CR; Zreiqat H
    Tissue Eng Part A; 2014 Mar; 20(5-6):992-1002. PubMed ID: 24195838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold.
    Wang Y; Yang X; Gu Z; Qin H; Li L; Liu J; Yu X
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():185-192. PubMed ID: 27207053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenic stimulation of human dental pulp stem cells with a novel gelatin-hydroxyapatite-tricalcium phosphate scaffold.
    Gu Y; Bai Y; Zhang D
    J Biomed Mater Res A; 2018 Jul; 106(7):1851-1861. PubMed ID: 29520937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of salvianolic acid B-loaded chitosan microspheres distributed three-dimensionally and homogeneously on the porous surface of hydroxyapatite scaffolds.
    Li J; Wang Q; Zhi W; Wang J; Feng B; Qu S; Mu Y; Weng J
    Biomed Mater; 2016 Oct; 11(5):055014. PubMed ID: 27716647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods.
    Namini MS; Bayat N; Tajerian R; Ebrahimi-Barough S; Azami M; Irani S; Jangjoo S; Shirian S; Ai J
    J Orthop Surg Res; 2018 Mar; 13(1):63. PubMed ID: 29587806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.