BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 29724907)

  • 1. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles.
    Tosches MA; Yamawaki TM; Naumann RK; Jacobi AA; Tushev G; Laurent G
    Science; 2018 May; 360(6391):881-888. PubMed ID: 29724907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shared and distinct transcriptomic cell types across neocortical areas.
    Tasic B; Yao Z; Graybuck LT; Smith KA; Nguyen TN; Bertagnolli D; Goldy J; Garren E; Economo MN; Viswanathan S; Penn O; Bakken T; Menon V; Miller J; Fong O; Hirokawa KE; Lathia K; Rimorin C; Tieu M; Larsen R; Casper T; Barkan E; Kroll M; Parry S; Shapovalova NV; Hirschstein D; Pendergraft J; Sullivan HA; Kim TK; Szafer A; Dee N; Groblewski P; Wickersham I; Cetin A; Harris JA; Levi BP; Sunkin SM; Madisen L; Daigle TL; Looger L; Bernard A; Phillips J; Lein E; Hawrylycz M; Svoboda K; Jones AR; Koch C; Zeng H
    Nature; 2018 Nov; 563(7729):72-78. PubMed ID: 30382198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in Wnt-Dependent Neuronal Morphology Underlie the Anatomical Diversification of Neocortical Homologs in Amniotes.
    Nomura T; Ohtaka-Maruyama C; Kiyonari H; Gotoh H; Ono K
    Cell Rep; 2020 May; 31(5):107592. PubMed ID: 32375034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits.
    Colquitt BM; Merullo DP; Konopka G; Roberts TF; Brainard MS
    Science; 2021 Feb; 371(6530):. PubMed ID: 33574185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The early differentiation of the neocortex: a hypothesis on neocortical evolution.
    Supèr H; Uylings HB
    Cereb Cortex; 2001 Dec; 11(12):1101-9. PubMed ID: 11709481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation.
    Yao Z; van Velthoven CTJ; Nguyen TN; Goldy J; Sedeno-Cortes AE; Baftizadeh F; Bertagnolli D; Casper T; Chiang M; Crichton K; Ding SL; Fong O; Garren E; Glandon A; Gouwens NW; Gray J; Graybuck LT; Hawrylycz MJ; Hirschstein D; Kroll M; Lathia K; Lee C; Levi B; McMillen D; Mok S; Pham T; Ren Q; Rimorin C; Shapovalova N; Sulc J; Sunkin SM; Tieu M; Torkelson A; Tung H; Ward K; Dee N; Smith KA; Tasic B; Zeng H
    Cell; 2021 Jun; 184(12):3222-3241.e26. PubMed ID: 34004146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAergic interneuron migration and the evolution of the neocortex.
    Tanaka DH; Nakajima K
    Dev Growth Differ; 2012 Apr; 54(3):366-72. PubMed ID: 22524606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal subtype specification in establishing mammalian neocortical circuits.
    Kumamoto T; Hanashima C
    Neurosci Res; 2014 Sep; 86():37-49. PubMed ID: 25019611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Lamprey Pallium Provides a Blueprint of the Mammalian Layered Cortex.
    Suryanarayana SM; Robertson B; Wallén P; Grillner S
    Curr Biol; 2017 Nov; 27(21):3264-3277.e5. PubMed ID: 29056451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hypothesis as to the organization of cerebral cortex in the common amniote ancestor of modern reptiles and mammals.
    Reiner AJ
    Novartis Found Symp; 2000; 228():83-102; discussion 102-13. PubMed ID: 10929318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early emergence of cortical interneuron diversity in the mouse embryo.
    Mi D; Li Z; Lim L; Li M; Moissidis M; Yang Y; Gao T; Hu TX; Pratt T; Price DJ; Sestan N; Marín O
    Science; 2018 Apr; 360(6384):81-85. PubMed ID: 29472441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neocortex. An overview of its evolutionary development, structural organization and synaptology.
    Nieuwenhuys R
    Anat Embryol (Berl); 1994 Oct; 190(4):307-37. PubMed ID: 7840420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolutionary origin of the mammalian isocortex: towards an integrated developmental and functional approach.
    Aboitiz F; Morales D; Montiel J
    Behav Brain Sci; 2003 Oct; 26(5):535-52; discussion 552-85. PubMed ID: 15179935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolutionary origin of visual and somatosensory representation in the vertebrate pallium.
    Suryanarayana SM; Pérez-Fernández J; Robertson B; Grillner S
    Nat Ecol Evol; 2020 Apr; 4(4):639-651. PubMed ID: 32203472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The temporal sequence of the mammalian neocortical neurogenetic program drives mediolateral pattern in the chick pallium.
    Suzuki IK; Kawasaki T; Gojobori T; Hirata T
    Dev Cell; 2012 Apr; 22(4):863-70. PubMed ID: 22424929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Independent Evolution of Dorsal Pallia in Multiple Vertebrate Lineages.
    Striedter GF; Northcutt RG
    Brain Behav Evol; 2022; 96(4-6):200-211. PubMed ID: 34175847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An atlas of cortical arealization identifies dynamic molecular signatures.
    Bhaduri A; Sandoval-Espinosa C; Otero-Garcia M; Oh I; Yin R; Eze UC; Nowakowski TJ; Kriegstein AR
    Nature; 2021 Oct; 598(7879):200-204. PubMed ID: 34616070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-type homologies and the origins of the neocortex.
    Dugas-Ford J; Rowell JJ; Ragsdale CW
    Proc Natl Acad Sci U S A; 2012 Oct; 109(42):16974-9. PubMed ID: 23027930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations of telencephalic development that paved the way for neocortical evolution.
    García-Moreno F; Molnár Z
    Prog Neurobiol; 2020 Nov; 194():101865. PubMed ID: 32526253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homology, neocortex, and the evolution of developmental mechanisms.
    Briscoe SD; Ragsdale CW
    Science; 2018 Oct; 362(6411):190-193. PubMed ID: 30309947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.