These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29724953)

  • 1. Enhanced thermal stability of nanograined metals below a critical grain size.
    Zhou X; Li XY; Lu K
    Science; 2018 May; 360(6388):526-530. PubMed ID: 29724953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid heating induced ultrahigh stability of nanograined copper.
    Li XY; Zhou X; Lu K
    Sci Adv; 2020 Apr; 6(17):eaaz8003. PubMed ID: 32494653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grain boundary stability governs hardening and softening in extremely fine nanograined metals.
    Hu J; Shi YN; Sauvage X; Sha G; Lu K
    Science; 2017 Mar; 355(6331):1292-1296. PubMed ID: 28336664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size Dependence of Grain Boundary Migration in Metals under Mechanical Loading.
    Zhou X; Li X; Lu K
    Phys Rev Lett; 2019 Mar; 122(12):126101. PubMed ID: 30978032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Nanolaminated Structure with Enhanced Thermal Stability in Copper.
    Hou J; Li X; Lu K
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Strongest Size in Gradient Nanograined Metals.
    Cao P
    Nano Lett; 2020 Feb; 20(2):1440-1446. PubMed ID: 31944115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical grain growth in nanocrystalline copper.
    Li JC
    Phys Rev Lett; 2006 Jun; 96(21):215506. PubMed ID: 16803250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative Temperature Dependence of Recrystallized Grain Size: Formulation and Experimental Confirmation on Copper.
    Elmasry M; Liu F; Jiang Y; Mao ZN; Liu Y; Wang JT
    Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals.
    Kobler A; Kashiwar A; Hahn H; Kübel C
    Ultramicroscopy; 2013 May; 128():68-81. PubMed ID: 23524380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation Twinning Induced High Tensile Ductility of a Gradient Nanograined Cu-Based Alloy.
    Wang J; Tao N
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separative and Comprehensive Effects of Grain Coarsening and Grain Refinement of Ni-38Cr-3.8Al Alloy during Thermal Deformation Process.
    Quan G; Zhao Y; Deng Q; Quan M; Yu Y; Wu D
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconventional grain growth suppression in oxygen-rich metal oxide nanoribbons.
    Han HJ; Lee GR; Xie Y; Jang H; Hynek DJ; Cho EN; Kim YJ; Jung YS; Cha JJ
    Sci Adv; 2021 Oct; 7(41):eabh2012. PubMed ID: 34623908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong texture in nanograin bulk Nd-Fe-B magnets via slow plastic deformation at low temperatures.
    Wang F; Shen W; Fan J; Du J; Chen K; Liu JP
    Nanoscale; 2019 Mar; 11(13):6062-6071. PubMed ID: 30869731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting grain rotation at the nanoscale.
    Chen B; Lutker K; Lei J; Yan J; Yang S; Mao HK
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3350-3. PubMed ID: 24550455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grain Refinement of a Powder Nickel-Base Superalloy Using Hot Deformation and Slow-Cooling.
    Fan X; Guo Z; Wang X; Yang J; Zou J
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30322200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum.
    Wang L; Teng J; Liu P; Hirata A; Ma E; Zhang Z; Chen M; Han X
    Nat Commun; 2014 Jul; 5():4402. PubMed ID: 25030380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibiting creep in nanograined alloys with stable grain boundary networks.
    Zhang BB; Tang YG; Mei QS; Li XY; Lu K
    Science; 2022 Nov; 378(6620):659-663. PubMed ID: 36356141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.
    Han X; Wang L; Yue Y; Zhang Z
    Ultramicroscopy; 2015 Apr; 151():94-100. PubMed ID: 25576291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites.
    Li Z; Zhang Y; Zhang Z; Cui YT; Guo Q; Liu P; Jin S; Sha G; Ding K; Li Z; Fan T; Urbassek HM; Yu Q; Zhu T; Zhang D; Wang YM
    Nat Commun; 2022 Sep; 13(1):5581. PubMed ID: 36151199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher Temperatures Yield Smaller Grains in a Thermally Stable Phase-Transforming Nanocrystalline Alloy.
    Amram D; Schuh CA
    Phys Rev Lett; 2018 Oct; 121(14):145503. PubMed ID: 30339419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.