These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29725043)

  • 1. Facial bone fragmentation in blind cavefish arises through two unusual ossification processes.
    Powers AK; Kaplan SA; Boggs TE; Gross JB
    Sci Rep; 2018 May; 8(1):7015. PubMed ID: 29725043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cranial asymmetry arises later in the life history of the blind Mexican cavefish, Astyanax mexicanus.
    Powers AK; Davis EM; Kaplan SA; Gross JB
    PLoS One; 2017; 12(5):e0177419. PubMed ID: 28486546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel evolution of regressive and constructive craniofacial traits across distinct populations of Astyanax mexicanus cavefish.
    Powers AK; Berning DJ; Gross JB
    J Exp Zool B Mol Dev Evol; 2020 Nov; 334(7-8):450-462. PubMed ID: 32030873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Natural Animal Model System of Craniofacial Anomalies: The Blind Mexican Cavefish.
    Gross JB; Powers AK
    Anat Rec (Hoboken); 2020 Jan; 303(1):24-29. PubMed ID: 30365238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Facial Bone Fragmentation Mirrors Asymmetric Distribution of Cranial Neuromasts in Blind Mexican Cavefish.
    Gross JB; Gangidine A; Powers AK
    Symmetry (Basel); 2016 Nov; 8(11):. PubMed ID: 28078105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinterpreting the work of Charles Breder: Sensory neuromasts and orbital skeleton variation in eyeless Astyanax cavefish.
    Gross JB; Powers AK
    Dev Biol; 2023 Jan; 493():13-16. PubMed ID: 36347313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the developmental plasticity and a coupling between left mechanosensory neuromasts and an adaptive foraging behavior.
    Fernandes VFL; Macaspac C; Lu L; Yoshizawa M
    Dev Biol; 2018 Sep; 441(2):262-271. PubMed ID: 29782817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural bone fragmentation in the blind cave-dwelling fish, Astyanax mexicanus: candidate gene identification through integrative comparative genomics.
    Gross JB; Stahl BA; Powers AK; Carlson BM
    Evol Dev; 2016; 18(1):7-18. PubMed ID: 26153732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Canal neuromast position prefigures developmental patterning of the suborbital bone series in Astyanax cave- and surface-dwelling fish.
    Powers AK; Boggs TE; Gross JB
    Dev Biol; 2018 Sep; 441(2):252-261. PubMed ID: 29630866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and evolution of craniofacial patterning is mediated by eye-dependent and -independent processes in the cavefish Astyanax.
    Yamamoto Y; Espinasa L; Stock DW; Jeffery WR
    Evol Dev; 2003; 5(5):435-46. PubMed ID: 12950623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lateral line confers evolutionarily derived sleep loss in the Mexican cavefish.
    Jaggard J; Robinson BG; Stahl BA; Oh I; Masek P; Yoshizawa M; Keene AC
    J Exp Biol; 2017 Jan; 220(Pt 2):284-293. PubMed ID: 28100806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish.
    Yoshizawa M; Robinson BG; Duboué ER; Masek P; Jaggard JB; O'Quin KE; Borowsky RL; Jeffery WR; Keene AC
    BMC Biol; 2015 Feb; 13():15. PubMed ID: 25761998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavefish and the basis for eye loss.
    Krishnan J; Rohner N
    Philos Trans R Soc Lond B Biol Sci; 2017 Feb; 372(1713):. PubMed ID: 27994128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of lateralized neural crest marker expression across development in the Mexican tetra,
    Gross JB; Berning D; Phelps A; Luc H
    Front Cell Dev Biol; 2023; 11():1074616. PubMed ID: 36875772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory evolution in blind cavefish is driven by early embryonic events during gastrulation and neurulation.
    Hinaux H; Devos L; Blin M; Elipot Y; Bibliowicz J; Alié A; Rétaux S
    Development; 2016 Dec; 143(23):4521-4532. PubMed ID: 27899509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparative Transcriptomic Analysis of Development in Two Astyanax Cavefish Populations.
    Stahl BA; Gross JB
    J Exp Zool B Mol Dev Evol; 2017 Sep; 328(6):515-532. PubMed ID: 28612405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two - three loci control scleral ossicle formation via epistasis in the cavefish Astyanax mexicanus.
    Lyon A; Powers AK; Gross JB; O'Quin KE
    PLoS One; 2017; 12(2):e0171061. PubMed ID: 28182695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards an integrated approach to understand Mexican cavefish evolution.
    Torres-Paz J; Hyacinthe C; Pierre C; Rétaux S
    Biol Lett; 2018 Aug; 14(8):. PubMed ID: 30089659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Asymmetric Genetic Signal Associated with Mechanosensory Expansion in Cave-Adapted Fish.
    Powers AK; Boggs TE; Gross JB
    Symmetry (Basel); 2020 Dec; 12(12):. PubMed ID: 33614165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early lens ablation causes dramatic long-term effects on the shape of bones in the craniofacial skeleton of Astyanax mexicanus.
    Dufton M; Hall BK; Franz-Odendaal TA
    PLoS One; 2012; 7(11):e50308. PubMed ID: 23226260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.