These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29725053)

  • 1. U.S. Agro-Climate in 20
    Kukal MS; Irmak S
    Sci Rep; 2018 May; 8(1):6977. PubMed ID: 29725053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in agro-climatic indices related to temperature in Central Chile.
    Piticar A
    Int J Biometeorol; 2019 Apr; 63(4):499-510. PubMed ID: 30706207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial-temporal variations in the thermal growing degree-days and season under climate warming in China during 1960-2011.
    Yin Y; Deng H; Wu S
    Int J Biometeorol; 2019 May; 63(5):649-658. PubMed ID: 28971276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in spatio-temporal distribution of AgMERRA-derived agro-climatic indices and agro-climatic zones for wheat crops in the northeast Iran.
    Yaghoubi F; Bannayan M; Asadi GA
    Int J Biometeorol; 2022 Mar; 66(3):431-446. PubMed ID: 34236505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability of growing degree days in Poland in response to ongoing climate changes in Europe.
    Wypych A; Sulikowska A; Ustrnul Z; Czekierda D
    Int J Biometeorol; 2017 Jan; 61(1):49-59. PubMed ID: 27221968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observed variations in U.S. frost timing linked to atmospheric circulation patterns.
    Strong C; McCabe GJ
    Nat Commun; 2017 May; 8():15307. PubMed ID: 28534488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties?
    Zheng B; Chenu K; Fernanda Dreccer M; Chapman SC
    Glob Chang Biol; 2012 Sep; 18(9):2899-914. PubMed ID: 24501066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change.
    Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assessment of the relationship between spring frost indicators and global crop yield losses.
    Guo W; Dai H; Qian J; Tan J; Xu Z; Guo Y
    Sci Total Environ; 2024 Sep; 954():176560. PubMed ID: 39357755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change].
    Wang XY; Yang XG; Sun S; Xie WJ
    Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3091-102. PubMed ID: 26995918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat.
    Zhang T; Lin X; Sassenrath GF
    Sci Total Environ; 2015 Mar; 508():331-42. PubMed ID: 25497355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Variation characteristics of agricultural heat resource and its effect on agriculture in Shanxi Province, China].
    Qian JX; Zhang JX; Li N; Han P
    Ying Yong Sheng Tai Xue Bao; 2015 Mar; 26(3):786-92. PubMed ID: 26211060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate-induced reduction in US-wide soybean yields underpinned by region- and in-season-specific responses.
    Mourtzinis S; Specht JE; Lindsey LE; Wiebold WJ; Ross J; Nafziger ED; Kandel HJ; Mueller N; Devillez PL; Arriaga FJ; Conley SP
    Nat Plants; 2015 Feb; 1():14026. PubMed ID: 27246761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of growing season indices for the Greater Baltic Area.
    Walther A; Linderholm HW
    Int J Biometeorol; 2006 Nov; 51(2):107-18. PubMed ID: 16932889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting wheat phenological responses to climate change in global scale.
    Ren S; Qin Q; Ren H
    Sci Total Environ; 2019 May; 665():620-631. PubMed ID: 30776634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.
    Qiao J; Yu D; Liu Y
    Environ Monit Assess; 2017 Oct; 189(11):532. PubMed ID: 28967045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Climate Covariability on Crop Yields in the Conterminous United States.
    Leng G; Zhang X; Huang M; Asrar GR; Leung LR
    Sci Rep; 2016 Sep; 6():33160. PubMed ID: 27616326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fingerprint of climate trends on European crop yields.
    Moore FC; Lobell DB
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2670-5. PubMed ID: 25691735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of climate change on spring wheat yields in North America and Eurasia in 1981-2015 and implications for breeding.
    Morgounov A; Sonder K; Abugalieva A; Bhadauria V; Cuthbert RD; Shamanin V; Zelenskiy Y; DePauw RM
    PLoS One; 2018; 13(10):e0204932. PubMed ID: 30332438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change reduces frost exposure for high-value California orchard crops.
    Parker L; Pathak T; Ostoja S
    Sci Total Environ; 2021 Mar; 762():143971. PubMed ID: 33373749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.