BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29725114)

  • 1. Mapping distribution of cysts of recent dinoflagellate and Cochlodinium polykrikoides using next-generation sequencing and morphological approaches in South Sea, Korea.
    Jung SW; Kang D; Kim HJ; Shin HH; Park JS; Park SY; Lee TK
    Sci Rep; 2018 May; 8(1):7011. PubMed ID: 29725114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the Distribution of Cysts from the Toxic Dinoflagellate Cochlodinium polykrikoides in Bloom-Prone Estuaries by a Novel Fluorescence In Situ Hybridization Assay.
    Hattenrath-Lehmann TK; Zhen Y; Wallace RB; Tang YZ; Gobler CJ
    Appl Environ Microbiol; 2016 Feb; 82(4):1114-1125. PubMed ID: 26637596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Distribution of dinoflagellate resting cysts in surface sediments from the Changjiang River estuary].
    Wang Z; Qi Y
    Ying Yong Sheng Tai Xue Bao; 2003 Jul; 14(7):1039-43. PubMed ID: 14587318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential Cause of Decrease in Bloom Events of the Harmful Dinoflagellate
    Baek SH; Kim Y; Lee M; Ahn CY; Cho KH; Park BS
    Toxins (Basel); 2020 Jun; 12(6):. PubMed ID: 32545486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique microbial module regulates the harmful algal bloom (Cochlodinium polykrikoides) and shifts the microbial community along the Southern Coast of Korea.
    Cui Y; Chun SJ; Baek SS; Baek SH; Kim PJ; Son M; Cho KH; Ahn CY; Oh HM
    Sci Total Environ; 2020 Jun; 721():137725. PubMed ID: 32182460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors controlling the origin of Cochlodinium polykrikoides blooms along the Goheung coast, South Korea.
    Lee MO; Kim JK; Kim BK
    Mar Pollut Bull; 2016 Dec; 113(1-2):165-175. PubMed ID: 27671844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of dinoflagellate cyst assemblages in recent sediments from a southern Mediterranean lagoon (Mellah, Algeria) with emphasis on toxic species.
    Draredja MA; Frihi H; Boualleg C; Abadie E; Laabir M
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):25173-25185. PubMed ID: 32347479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the Energetic Metabolism of Resting Cysts under Different Conditions from Molecular and Physiological Perspectives in the Harmful Algal Blooms-Forming Dinoflagellate
    Li F; Yang A; Hu Z; Lin S; Deng Y; Tang YZ
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of real-time RT-PCR for detecting viable Cochlodinium polykrikoides (Dinophyceae) cysts in sediment.
    Park TG; Kim JJ; Kim WJ; Won KM
    Harmful Algae; 2016 Dec; 60():36-44. PubMed ID: 28073561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the dinoflagellate cysts in ballast tank sediments of international vessels in Chinese shipyards.
    Lin L; Wang Q; Wu H
    Mar Environ Res; 2021 Jul; 169():105348. PubMed ID: 33991936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-variance between free-living bacteria and Cochlodinium polykrikoides (Dinophyta) harmful algal blooms, South Korea.
    Kim HJ; Jeoung G; Kim KE; Park JS; Kang D; Baek SH; Lee CY; Kim H; Cho S; Lee TK; Jung SW
    Harmful Algae; 2023 Feb; 122():102371. PubMed ID: 36754457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting outbreaks of Cochlodinium polykrikoides blooms in coastal areas of Korea.
    Lee YS; Lee SY
    Mar Pollut Bull; 2006 Jun; 52(6):626-34. PubMed ID: 16678213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and abundance of modern dinoflagellate cysts from Marmara, Aegean and Eastern Seas of Turkey.
    Aydin H; Uzar S
    J Environ Biol; 2014 Mar; 35(2):413-9. PubMed ID: 24665771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resting Cyst Distribution and Molecular Identification of the Harmful Dinoflagellate
    Thoha H; Muawanah ; Bayu Intan MD; Rachman A; Sianturi OR; Sidabutar T; Iwataki M; Takahashi K; Avarre JC; Masseret E
    Front Microbiol; 2019; 10():306. PubMed ID: 30846977
    [No Abstract]   [Full Text] [Related]  

  • 15. Formation and germination of temporary cysts of Cochlodinium polykrikoides Margalef (Dinophyceae) and their ecological role in dense blooms.
    Shin HH; Li Z; Yoon YH; Oh SJ; Lim WA
    Harmful Algae; 2017 Jun; 66():57-64. PubMed ID: 28602254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ocean warming along temperate western boundaries of the Northern Hemisphere promotes an expansion of Cochlodinium polykrikoides blooms.
    Griffith AW; Doherty OM; Gobler CJ
    Proc Biol Sci; 2019 Jun; 286(1904):20190340. PubMed ID: 31161913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting outbreaks of high-density Cochlodinium polykrikoides red tides in the coastal seawaters around Yeosu and Tongyeong, Korea.
    Lee YS
    Mar Pollut Bull; 2006 Oct; 52(10):1249-59. PubMed ID: 16631809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptomics of toxin synthesis genes between the non-toxin producing dinoflagellate Cochlodinium polykrikoides and toxigenic Alexandrium pacificum.
    Wang H; Guo R; Lim WA; Allen AE; Ki JS
    Harmful Algae; 2020 Mar; 93():101777. PubMed ID: 32307068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dispersal of dinoflagellate cyst caused by international ships under repair conditions: a potential invasion risk to the Yangtze River Estuary, China.
    Wang Q; Chen X; Lin L; Yao W; Wu H
    Environ Sci Pollut Res Int; 2023 Aug; 30(36):86178-86188. PubMed ID: 37402915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical processes leading to the development of an anomalously large Cochlodinium polykrikoides bloom in the East sea/Japan sea.
    Kim DW; Jo YH; Choi JK; Choi JG; Bi H
    Harmful Algae; 2016 May; 55():250-258. PubMed ID: 28073539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.