These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29725162)

  • 1. Peptide-Binding Nanoparticle Materials with Tailored Recognition sites for Basic Peptides.
    Fa S; Zhao Y
    Chem Mater; 2017 Nov; 29(21):9284-9291. PubMed ID: 29725162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-Selective Recognition of Peptides in Aqueous Solution: A Supramolecular Approach through Micellar Imprinting.
    Zhao Y
    Chemistry; 2018 Sep; 24(53):14001-14009. PubMed ID: 29694679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-Soluble Nanoparticle Receptors Supramolecularly Coded for Acidic Peptides.
    Fa S; Zhao Y
    Chemistry; 2018 Jan; 24(1):150-158. PubMed ID: 29096045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zwitterionic Molecularly Imprinted Cross-Linked Micelles for Alkaloid Recognition in Water.
    Duan L; Zhao Y
    J Org Chem; 2019 Nov; 84(21):13457-13464. PubMed ID: 31545044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-Soluble Molecularly Imprinted Nanoparticle Receptors with Hydrogen-Bond-Assisted Hydrophobic Binding.
    Arifuzzaman MD; Zhao Y
    J Org Chem; 2016 Sep; 81(17):7518-26. PubMed ID: 27462993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning surface-cross-linking of molecularly imprinted cross-linked micelles for molecular recognition in water.
    Zhang S; Zhao Y
    J Mol Recognit; 2019 Apr; 32(4):e2769. PubMed ID: 30419606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-soluble molecularly imprinted nanoparticles (MINPs) with tailored, functionalized, modifiable binding pockets.
    Awino JK; Zhao Y
    Chemistry; 2015 Jan; 21(2):655-61. PubMed ID: 25382073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-Soluble Molecularly Imprinted Nanoparticles (MINPs) with Tailored, Functionalized, Modifiable Binding Pockets.
    Awino JK; Zhao Y
    Chemistry; 2014 Nov; ():. PubMed ID: 25376391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General Method for Peptide Recognition in Water through Bioinspired Complementarity.
    Fa S; Zhao Y
    Chem Mater; 2019 Jul; 31(13):4889-4896. PubMed ID: 32921904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imprinted micelles for chiral recognition in water: shape, depth, and number of recognition sites.
    Awino JK; Zhao Y
    Org Biomol Chem; 2017 Jun; 15(22):4851-4858. PubMed ID: 28537295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymeric Nanoparticle Receptors as Synthetic Antibodies for Nonsteroidal Anti-Inflammatory Drugs (NSAIDs).
    Awino JK; Zhao Y
    ACS Biomater Sci Eng; 2015 Jun; 1(6):425-430. PubMed ID: 33445246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Binding of Folic Acid and Derivatives by Imprinted Nanoparticle Receptors in Water.
    Duan L; Zhao Y
    Bioconjug Chem; 2018 Apr; 29(4):1438-1445. PubMed ID: 29513991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-mimetic, molecularly imprinted nanoparticles for selective binding of bile salt derivatives in water.
    Awino JK; Zhao Y
    J Am Chem Soc; 2013 Aug; 135(34):12552-5. PubMed ID: 23931721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the interaction of heparin with arginine and lysine and the importance of these basic amino acids in the binding of heparin to acidic fibroblast growth factor.
    Fromm JR; Hileman RE; Caldwell EE; Weiler JM; Linhardt RJ
    Arch Biochem Biophys; 1995 Nov; 323(2):279-87. PubMed ID: 7487089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformations of model peptides in membrane-mimetic environments.
    Gierasch LM; Lacy JE; Thompson KF; Rockwell AL; Watnick PI
    Biophys J; 1982 Jan; 37(1):275-84. PubMed ID: 7055624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-Selective Binding of Oligopeptides in Water through Hydrophobic Coding.
    Awino JK; Gunasekara RW; Zhao Y
    J Am Chem Soc; 2017 Feb; 139(6):2188-2191. PubMed ID: 28128940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles that Distinguish Chemical and Supramolecular Contexts of Lysine for Single-Site Functionalization of Protein.
    Ghosh A; Zhao Y
    Nano Lett; 2024 Jul; 24(28):8763-8769. PubMed ID: 38976835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Ligands in the Imprinting and Binding of Molecularly Imprinted Cross-Linked Micelles.
    Arifuzzaman MD; Zhao W; Zhao Y
    Supramol Chem; 2018; 30(11):929-939. PubMed ID: 31223222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein folding in a reverse micelle environment: the role of confinement and dehydration.
    Martinez AV; DeSensi SC; Dominguez L; Rivera E; Straub JE
    J Chem Phys; 2011 Feb; 134(5):055107. PubMed ID: 21303167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.