These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29725674)

  • 1. Physiological changes in Chlamydomonas reinhardtii after 1000 generations of selection of cadmium exposure at environmentally relevant concentrations.
    Yu Z; Wei H; Hao R; Chu H; Zhu Y
    Environ Sci Process Impacts; 2018 Jun; 20(6):923-933. PubMed ID: 29725674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of Chlamydomonas reinhardtii to cadmium stress is associated with phototaxis.
    Yu Z; Zhang T; Hao R; Zhu Y
    Environ Sci Process Impacts; 2019 Jun; 21(6):1011-1020. PubMed ID: 31120077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-genome re-sequencing and transcriptome reveal cadmium tolerance related genes and pathways in Chlamydomonas reinhardtii.
    Yu Z; Zhang T; Zhu Y
    Ecotoxicol Environ Saf; 2020 Mar; 191():110231. PubMed ID: 31981954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC 121.
    Samadani M; Perreault F; Oukarroum A; Dewez D
    Chemosphere; 2018 Jan; 191():174-182. PubMed ID: 29032262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of TiO
    Yu Z; Hao R; Zhang L; Zhu Y
    Ecotoxicol Environ Saf; 2018 Jul; 156():75-86. PubMed ID: 29533210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene.
    Aksmann A; Pokora W; Baścik-Remisiewicz A; Dettlaff-Pokora A; Wielgomas B; Dziadziuszko M; Tukaj Z
    Ecotoxicol Environ Saf; 2014 Dec; 110():31-40. PubMed ID: 25193882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model.
    Xie M; Sun Y; Feng J; Gao Y; Zhu L
    Aquat Toxicol; 2019 May; 210():106-116. PubMed ID: 30844631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress in the algae Chlamydomonas reinhardtii exposed to biocides.
    Almeida AC; Gomes T; Langford K; Thomas KV; Tollefsen KE
    Aquat Toxicol; 2017 Aug; 189():50-59. PubMed ID: 28582701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii.
    Pan CG; Peng FJ; Shi WJ; Hu LX; Wei XD; Ying GG
    Ecotoxicol Environ Saf; 2018 Feb; 148():393-401. PubMed ID: 29100157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules.
    Lavoie M; Le Faucheur S; Fortin C; Campbell PG
    Aquat Toxicol; 2009 Apr; 92(2):65-75. PubMed ID: 19201040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ evaluation of cadmium biomarkers in green algae.
    Simon DF; Davis TA; Tercier-Waeber ML; England R; Wilkinson KJ
    Environ Pollut; 2011 Oct; 159(10):2630-6. PubMed ID: 21696872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of selenate on growth and photosynthesis of Chlamydomonas reinhardtii.
    Geoffroy L; Gilbin R; Simon O; Floriani M; Adam C; Pradines C; Cournac L; Garnier-Laplace J
    Aquat Toxicol; 2007 Jun; 83(2):149-58. PubMed ID: 17507103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii.
    Jamers A; Blust R; De Coen W; Griffin JL; Jones OA
    Aquat Toxicol; 2013 Jan; 126():355-64. PubMed ID: 23063003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of copper and cadmium exposure on toxicity endpoints and gene expression in Chlamydomonas reinhardtii.
    Stoiber TL; Shafer MM; Armstrong DE
    Environ Toxicol Chem; 2010 Jan; 29(1):191-200. PubMed ID: 20821435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii.
    Röhder LA; Brandt T; Sigg L; Behra R
    Aquat Toxicol; 2014 Jul; 152():121-30. PubMed ID: 24747084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions.
    Nowicka B; Pluciński B; Kuczyńska P; Kruk J
    Ecotoxicol Environ Saf; 2016 Aug; 130():133-45. PubMed ID: 27104807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress potential of the herbicides bifenox and metribuzin in the microalgae Chlamydomonas reinhardtii.
    Almeida AC; Gomes T; Langford K; Thomas KV; Tollefsen KE
    Aquat Toxicol; 2019 May; 210():117-128. PubMed ID: 30849631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal stoichiometry in predicting Cd and Cu toxicity to a freshwater green alga Chlamydomonas reinhardtii.
    Wang WX; Dei RC
    Environ Pollut; 2006 Jul; 142(2):303-12. PubMed ID: 16310914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of benzophenone-3 on the green alga Chlamydomonas reinhardtii and the cyanobacterium Microcystis aeruginosa.
    Mao F; He Y; Kushmaro A; Gin KY
    Aquat Toxicol; 2017 Dec; 193():1-8. PubMed ID: 28992446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium accumulation and toxicity affect the extracytoplasmic polyphosphate level in Chlamydomonas reinhardtii.
    Samadani M; Dewez D
    Ecotoxicol Environ Saf; 2018 Dec; 166():200-206. PubMed ID: 30269015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.