BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29725676)

  • 1. Mechanistic insights into the inhibition and size effects of graphene oxide nanosheets on the aggregation of an amyloid-β peptide fragment.
    Chen Y; Chen Z; Sun Y; Lei J; Wei G
    Nanoscale; 2018 May; 10(19):8989-8997. PubMed ID: 29725676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations reveal the mechanism of graphene oxide nanosheet inhibition of Aβ
    Jin Y; Sun Y; Chen Y; Lei J; Wei G
    Phys Chem Chem Phys; 2019 Jun; 21(21):10981-10991. PubMed ID: 31111835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Destruction of amyloid fibrils by graphene through penetration and extraction of peptides.
    Yang Z; Ge C; Liu J; Chong Y; Gu Z; Jimenez-Cruz CA; Chai Z; Zhou R
    Nanoscale; 2015 Nov; 7(44):18725-37. PubMed ID: 26503908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study.
    Sun Y; Qian Z; Wei G
    Phys Chem Chem Phys; 2016 May; 18(18):12582-91. PubMed ID: 27091578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study.
    Baweja L; Balamurugan K; Subramanian V; Dhawan A
    J Mol Graph Model; 2015 Sep; 61():175-85. PubMed ID: 26275931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene oxide-iron oxide nanocomposite as an inhibitor of Aβ 42 amyloid peptide aggregation.
    Ahmad I; Mozhi A; Yang L; Han Q; Liang X; Li C; Yang R; Wang C
    Colloids Surf B Biointerfaces; 2017 Nov; 159():540-545. PubMed ID: 28846964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene quantum dots for the inhibition of β amyloid aggregation.
    Liu Y; Xu LP; Dai W; Dong H; Wen Y; Zhang X
    Nanoscale; 2015 Dec; 7(45):19060-5. PubMed ID: 26515666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β
    Shuaib S; Goyal B
    J Biomol Struct Dyn; 2018 Feb; 36(3):663-678. PubMed ID: 28162045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular mechanism of fullerene-inhibited aggregation of Alzheimer's β-amyloid peptide fragment.
    Xie L; Luo Y; Lin D; Xi W; Yang X; Wei G
    Nanoscale; 2014 Aug; 6(16):9752-62. PubMed ID: 25004796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, orientation, and surface interaction of Alzheimer amyloid-β peptides on the graphite.
    Yu X; Wang Q; Lin Y; Zhao J; Zhao C; Zheng J
    Langmuir; 2012 Apr; 28(16):6595-605. PubMed ID: 22468636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Inhomogeneity of Graphene Oxide Influences Dissociation of Aβ
    He Z; Li J; Chen SH; Zhou R
    J Phys Chem B; 2019 Oct; 123(43):9098-9103. PubMed ID: 31566974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel form of β-strand assembly observed in Aβ(33-42) adsorbed onto graphene.
    Wang X; Weber JK; Liu L; Dong M; Zhou R; Li J
    Nanoscale; 2015 Oct; 7(37):15341-8. PubMed ID: 26331805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hydroxylated carbon nanotubes on the aggregation of Aβ16-22 peptides: a combined simulation and experimental study.
    Xie L; Lin D; Luo Y; Li H; Yang X; Wei G
    Biophys J; 2014 Oct; 107(8):1930-1938. PubMed ID: 25418174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating aβ33-42 peptide assembly by graphene oxide.
    Li Q; Liu L; Zhang S; Xu M; Wang X; Wang C; Besenbacher F; Dong M
    Chemistry; 2014 Jun; 20(24):7236-40. PubMed ID: 24838837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directly probing the dissociation effects of graphene oxide nanosheets on hIAPP fibrils.
    Li S; Lin D; Hu X; Yang X
    Nanotechnology; 2018 Dec; 29(49):495102. PubMed ID: 30211692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers.
    Wang Q; Shah N; Zhao J; Wang C; Zhao C; Liu L; Li L; Zhou F; Zheng J
    Phys Chem Chem Phys; 2011 Sep; 13(33):15200-10. PubMed ID: 21769359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the co-aggregation of Aβ and tau amyloid core peptides: Revealing potential pathological heterooligomers by simulations.
    Li X; Chen Y; Yang Z; Zhang S; Wei G; Zhang L
    Int J Biol Macromol; 2024 Jan; 254(Pt 2):127841. PubMed ID: 37924907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation.
    Okumura H; Itoh SG
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral effect at protein/graphene interface: a bioinspired perspective to understand amyloid formation.
    Qing G; Zhao S; Xiong Y; Lv Z; Jiang F; Liu Y; Chen H; Zhang M; Sun T
    J Am Chem Soc; 2014 Jul; 136(30):10736-42. PubMed ID: 25011035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Amyloid-β Oligomerization at the Molecular Level: The Role of the Fibril Surface.
    Barz B; Strodel B
    Chemistry; 2016 Jun; 22(26):8768-72. PubMed ID: 27135646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.