BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 29725721)

  • 1. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum.
    Zhang X; Zhang X; Xu G; Zhang X; Shi J; Xu Z
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5939-5951. PubMed ID: 29725721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-yield production of L-serine through a novel identified exporter combined with synthetic pathway in Corynebacterium glutamicum.
    Zhang X; Gao Y; Chen Z; Xu G; Zhang X; Li H; Shi J; Koffas MAG; Xu Z
    Microb Cell Fact; 2020 May; 19(1):115. PubMed ID: 32471433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breeding L-arginine-producing strains by a novel mutagenesis method: Atmospheric and room temperature plasma (ARTP).
    Cheng G; Xu J; Xia X; Guo Y; Xu K; Su C; Zhang W
    Prep Biochem Biotechnol; 2016 Jul; 46(5):509-16. PubMed ID: 26460578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of heterologous protein production in Corynebacterium glutamicum via atmospheric and room temperature plasma mutagenesis and high-throughput screening.
    Meng L; Gao X; Liu X; Sun M; Yan H; Li A; Yang Y; Bai Z
    J Biotechnol; 2021 Sep; 339():22-31. PubMed ID: 34311028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel aceE mutation leading to a better growth profile and a higher L-serine production in a high-yield L-serine-producing Corynebacterium glutamicum strain.
    Guo W; Chen Z; Zhang X; Xu G; Zhang X; Shi J; Xu Z
    J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1293-301. PubMed ID: 27344574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of L-ornithine from sucrose and molasses by recombinant Corynebacterium glutamicum.
    Zhang YY; Bu YF; Liu JZ
    Folia Microbiol (Praha); 2015 Sep; 60(5):393-8. PubMed ID: 25527174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Intracellular Shikimic Acid Biosensor for Monitoring Shikimate Synthesis in Corynebacterium glutamicum.
    Liu C; Zhang B; Liu YM; Yang KQ; Liu SJ
    ACS Synth Biol; 2018 Feb; 7(2):591-601. PubMed ID: 29087704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing l-glutamine production in Corynebacterium glutamicum by rational metabolic engineering combined with a two-stage pH control strategy.
    Lv Q; Hu M; Tian L; Liu F; Wang Q; Xu M; Rao Z
    Bioresour Technol; 2021 Dec; 341():125799. PubMed ID: 34425465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of l-Valine Production by Atmospheric and Room Temperature Plasma Mutagenesis and High-Throughput Screening in
    Han G; Xu N; Sun X; Chen J; Chen C; Wang Q
    ACS Omega; 2020 Mar; 5(10):4751-4758. PubMed ID: 32201760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rewiring the Central Metabolic Pathway for High-Yield l-Serine Production in Corynebacterium glutamicum by Using Glucose.
    Zhang X; Lai L; Xu G; Zhang X; Shi J; Koffas MAG; Xu Z
    Biotechnol J; 2019 Jun; 14(6):e1800497. PubMed ID: 30791233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine- and L-Valine-Producing
    Ma Y; Chen Q; Cui Y; Du L; Shi T; Xu Q; Ma Q; Xie X; Chen N
    J Microbiol Biotechnol; 2018 Nov; 28(11):1916-1927. PubMed ID: 30562884
    [No Abstract]   [Full Text] [Related]  

  • 13. Metabolic engineering of Corynebacterium glutamicum for L-cysteine production.
    Wei L; Wang H; Xu N; Zhou W; Ju J; Liu J; Ma Y
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1325-1338. PubMed ID: 30564850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoter library-based module combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum.
    Wei L; Xu N; Wang Y; Zhou W; Han G; Ma Y; Liu J
    Appl Microbiol Biotechnol; 2018 May; 102(9):4117-4130. PubMed ID: 29564525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of L-valine from metabolically engineered Corynebacterium glutamicum.
    Wang X; Zhang H; Quinn PJ
    Appl Microbiol Biotechnol; 2018 May; 102(10):4319-4330. PubMed ID: 29594358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Metabolic engineering of L-valine synthesis and secretory pathways in Corynebacterium glutamicum for higher production].
    Zhang H; Li Y; Wang X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1606-1619. PubMed ID: 30394028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum.
    Zou Y; Chen T; Feng L; Zhang S; Xing D; Wang Z
    Biotechnol Lett; 2017 Sep; 39(9):1369-1374. PubMed ID: 28536938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.
    Mahr R; Gätgens C; Gätgens J; Polen T; Kalinowski J; Frunzke J
    Metab Eng; 2015 Nov; 32():184-194. PubMed ID: 26453945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum.
    Zhu Q; Zhang X; Luo Y; Guo W; Xu G; Shi J; Xu Z
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1665-73. PubMed ID: 25434811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Corynebacterium glutamicum for violacein hyper production.
    Sun H; Zhao D; Xiong B; Zhang C; Bi C
    Microb Cell Fact; 2016 Aug; 15(1):148. PubMed ID: 27557730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.