These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 29726019)
1. Speed Modulation of the HeartWare HVAD to Assess In Vitro Hemocompatibility of Pulsatile and Continuous Flow Regimes in a Rotary Blood Pump. Horobin JT; Simmonds MJ; Nandakumar D; Gregory SD; Tansley G; Pauls JP; Girnghuber A; Balletti N; Fraser JF Artif Organs; 2018 Sep; 42(9):879-890. PubMed ID: 29726019 [TBL] [Abstract][Full Text] [Related]
2. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps. Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447 [TBL] [Abstract][Full Text] [Related]
3. Investigation of the Characteristics of HeartWare HVAD and Thoratec HeartMate II Under Steady and Pulsatile Flow Conditions. Noor MR; Ho CH; Parker KH; Simon AR; Banner NR; Bowles CT Artif Organs; 2016 Jun; 40(6):549-60. PubMed ID: 26611518 [TBL] [Abstract][Full Text] [Related]
4. Electrocardiogram-synchronized rotational speed change mode in rotary pumps could improve pulsatility. Ando M; Nishimura T; Takewa Y; Yamazaki K; Kyo S; Ono M; Tsukiya T; Mizuno T; Taenaka Y; Tatsumi E Artif Organs; 2011 Oct; 35(10):941-7. PubMed ID: 21615427 [TBL] [Abstract][Full Text] [Related]
5. Left Ventricular Assist Device Flow Pattern Analysis Using a Novel Model Incorporating Left Ventricular Pulsatility. Grinstein J; Torii R; Bourantas CV; Garcia-Garcia HM ASAIO J; 2021 Jul; 67(7):724-732. PubMed ID: 33528162 [TBL] [Abstract][Full Text] [Related]
7. The Influence of Rotary Blood Pump Speed Modulation on the Risk of Intraventricular Thrombosis. Liao S; Wu EL; Neidlin M; Li Z; Simpson B; Gregory SD Artif Organs; 2018 Oct; 42(10):943-953. PubMed ID: 30260033 [TBL] [Abstract][Full Text] [Related]
8. Ex vivo assessment of erythrocyte tolerance to the HeartWare ventricular assist device operated in three discrete configurations. Kuck L; Simmonds MJ; Chan CHH; Pauls JP; Tansley GD; Feldmann F; McNamee AP Artif Organs; 2021 Jun; 45(6):E146-E157. PubMed ID: 33236358 [TBL] [Abstract][Full Text] [Related]
9. Blood trauma potential of the HeartWare Ventricular Assist Device in pediatric patients. Granegger M; Thamsen B; Schlöglhofer T; Lach S; Escher A; Haas T; Meboldt M; Schweiger M; Hübler M; Zimpfer D J Thorac Cardiovasc Surg; 2020 Apr; 159(4):1519-1527.e1. PubMed ID: 31444074 [TBL] [Abstract][Full Text] [Related]
10. Thrombotic Risk of Rotor Speed Modulation Regimes of Contemporary Centrifugal Continuous-flow Left Ventricular Assist Devices. Boraschi A; Bozzi S; Thamsen B; Granegger M; Wiegmann L; Pappalardo F; Slepian MJ; Kurtcuoglu V; Redaelli A; De Zélicourt D; Consolo F ASAIO J; 2021 Jul; 67(7):737-745. PubMed ID: 33074865 [TBL] [Abstract][Full Text] [Related]
11. The Effect of Compliant Inflow Cannulae on the Hemocompatibility of Rotary Blood Pump Circuits in an In Vitro Model. Pauls JP; Nandakumar D; Horobin J; Prendeville JD; Simmonds MJ; Fraser JF; Tansley G; Gregory SD Artif Organs; 2017 Oct; 41(10):E118-E128. PubMed ID: 28621838 [TBL] [Abstract][Full Text] [Related]
12. Effect of rotary blood pump pulsatility on potential parameters of blood compatibility and thrombosis in inflow cannula tips. Wong KC; Büsen M; Benzinger C; Gäng R; Bezema M; Greatrex N; Schmitz-Rode T; Steinseifer U Int J Artif Organs; 2014 Dec; 37(12):875-87. PubMed ID: 25450321 [TBL] [Abstract][Full Text] [Related]
13. In Vitro Hemocompatibility Evaluation of Ventricular Assist Devices in Pediatric Flow Conditions: A Benchmark Study. Chan CHH; Diab S; Moody K; Frazier OH; Sampaio LC; Fraser CD; Teruya J; Adachi I Artif Organs; 2018 Nov; 42(11):1028-1034. PubMed ID: 30101559 [TBL] [Abstract][Full Text] [Related]
14. Pulsatile Conduit Pressure Gradients in the HeartWare HVAD. Jain P; Shehab S; Stevens M; Macdonald P; Jansz P; Hayward C ASAIO J; 2019 Jul; 65(5):489-494. PubMed ID: 30762587 [TBL] [Abstract][Full Text] [Related]
15. Hemodynamic modes of ventricular assist with a rotary blood pump: continuous, pulsatile, and failure. Vandenberghe S; Segers P; Antaki JF; Meyns B; Verdonck PR ASAIO J; 2005; 51(6):711-8. PubMed ID: 16340355 [TBL] [Abstract][Full Text] [Related]
16. Haemodynamic evaluation of the new pulsatile-flow generation method in vitro. Itkin GP; Bychnev AS; Kuleshov AP; Drobyshev AA Int J Artif Organs; 2020 Mar; 43(3):157-164. PubMed ID: 31603372 [TBL] [Abstract][Full Text] [Related]
17. Shear stress and blood trauma under constant and pulse-modulated speed CF-VAD operations: CFD analysis of the HVAD. Chen Z; Jena SK; Giridharan GA; Sobieski MA; Koenig SC; Slaughter MS; Griffith BP; Wu ZJ Med Biol Eng Comput; 2019 Apr; 57(4):807-818. PubMed ID: 30406881 [TBL] [Abstract][Full Text] [Related]
18. Numerical modeling of continuous-flow left ventricular assist device performance. Telyshev D; Petukhov D; Selishchev S Int J Artif Organs; 2019 Nov; 42(11):611-620. PubMed ID: 31169054 [TBL] [Abstract][Full Text] [Related]
19. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development. Telyshev D; Denisov M; Pugovkin A; Selishchev S; Nesterenko I Artif Organs; 2018 Apr; 42(4):432-443. PubMed ID: 29508416 [TBL] [Abstract][Full Text] [Related]
20. Pulsatile control of rotary blood pumps: Does the modulation waveform matter? Pirbodaghi T; Axiak S; Weber A; Gempp T; Vandenberghe S J Thorac Cardiovasc Surg; 2012 Oct; 144(4):970-7. PubMed ID: 22418246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]