These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29726100)

  • 1. Study of DNA Origami Dimerization and Dimer Dissociation Dynamics and of the Factors that Limit Dimerization.
    Liber M; Tomov TE; Tsukanov R; Berger Y; Popov M; Khara DC; Nir E
    Small; 2018 Jun; 14(23):e1800218. PubMed ID: 29726100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembly of DNA Origami Heterodimers in High Yields and Analysis of the Involved Mechanisms.
    Sheheade B; Liber M; Popov M; Berger Y; Khara DC; Jopp J; Nir E
    Small; 2019 Dec; 15(51):e1902979. PubMed ID: 31755230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and Thermodynamics of Watson-Crick Base Pairing Driven DNA Origami Dimerization.
    Zenk J; Tuntivate C; Schulman R
    J Am Chem Soc; 2016 Mar; 138(10):3346-54. PubMed ID: 26925853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing DNA nanotechnology using single-molecule fluorescence.
    Tsukanov R; Tomov TE; Liber M; Berger Y; Nir E
    Acc Chem Res; 2014 Jun; 47(6):1789-98. PubMed ID: 24828396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bipedal DNA motor that travels back and forth between two DNA origami tiles.
    Liber M; Tomov TE; Tsukanov R; Berger Y; Nir E
    Small; 2015 Feb; 11(5):568-75. PubMed ID: 25236793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct visualization of transient thermal response of a DNA origami.
    Song J; Arbona JM; Zhang Z; Liu L; Xie E; Elezgaray J; Aime JP; Gothelf KV; Besenbacher F; Dong M
    J Am Chem Soc; 2012 Jun; 134(24):9844-7. PubMed ID: 22646845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot assembly of a hetero-dimeric DNA origami from chip-derived staples and double-stranded scaffold.
    Marchi AN; Saaem I; Tian J; LaBean TH
    ACS Nano; 2013 Feb; 7(2):903-10. PubMed ID: 23281627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Energy Landscape for the Self-Assembly of a Two-Dimensional DNA Origami Complex.
    Fern J; Lu J; Schulman R
    ACS Nano; 2016 Feb; 10(2):1836-44. PubMed ID: 26820483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From nonfinite to finite 1D arrays of origami tiles.
    Wu TC; Rahman M; Norton ML
    Acc Chem Res; 2014 Jun; 47(6):1750-8. PubMed ID: 24803094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth Rate and Thermal Properties of DNA Origami Filaments.
    Stenke LJ; Saccà B
    Nano Lett; 2022 Nov; 22(22):8818-8826. PubMed ID: 36327970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guiding the folding pathway of DNA origami.
    Dunn KE; Dannenberg F; Ouldridge TE; Kwiatkowska M; Turberfield AJ; Bath J
    Nature; 2015 Sep; 525(7567):82-6. PubMed ID: 26287459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch.
    Bruetzel LK; Walker PU; Gerling T; Dietz H; Lipfert J
    Nano Lett; 2018 Apr; 18(4):2672-2676. PubMed ID: 29554806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization and structural changes of 2D DNA origami by enzymatic ligation.
    Rajendran A; Krishnamurthy K; Giridasappa A; Nakata E; Morii T
    Nucleic Acids Res; 2021 Aug; 49(14):7884-7900. PubMed ID: 34289063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized DNA Hybridization Chain Reactions on DNA Origami.
    Bui H; Shah S; Mokhtar R; Song T; Garg S; Reif J
    ACS Nano; 2018 Feb; 12(2):1146-1155. PubMed ID: 29357217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering the self-assembly of DNA nanostructures by thermodynamics and kinetics.
    Wei X; Nangreave J; Liu Y
    Acc Chem Res; 2014 Jun; 47(6):1861-70. PubMed ID: 24851996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interchromophoric Interactions Determine the Maximum Brightness Density in DNA Origami Structures.
    Schröder T; Scheible MB; Steiner F; Vogelsang J; Tinnefeld P
    Nano Lett; 2019 Feb; 19(2):1275-1281. PubMed ID: 30681342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switchable Triggered Interconversion and Reconfiguration of DNA Origami Dimers and Their Use for Programmed Catalysis.
    Wang J; Zhou Z; Yue L; Wang S; Willner I
    Nano Lett; 2018 Apr; 18(4):2718-2724. PubMed ID: 29537286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Structures for Surface-Enhanced Raman Scattering: DNA Origami/Gold Nanoparticle Dimer/Graphene.
    Prinz J; Matković A; Pešić J; Gajić R; Bald I
    Small; 2016 Oct; 12(39):5458-5467. PubMed ID: 27594092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isothermal hybridization kinetics of DNA assembly of two-dimensional DNA origami.
    Song J; Zhang Z; Zhang S; Liu L; Li Q; Xie E; Gothelf KV; Besenbacher F; Dong M
    Small; 2013 Sep; 9(17):2954-9. PubMed ID: 23436715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.