These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 29726504)
1. Removal of millimeter-scale rolled edges using bevel-cut-like tool influence function in magnetorheological jet polishing. Yang H; Cheng H; Feng Y; Jing X Appl Opt; 2018 May; 57(13):3377-3384. PubMed ID: 29726504 [TBL] [Abstract][Full Text] [Related]
2. Optimization technique for rolled edge control process based on the acentric tool influence functions. Du H; Song C; Li S; Xu M; Peng X Appl Opt; 2017 May; 56(15):4330-4337. PubMed ID: 29047857 [TBL] [Abstract][Full Text] [Related]
3. Mathematic models and material removal characteristics of multigesture jetting using magnetorheological fluid. Wang T; Cheng H; Tam H Appl Opt; 2014 Nov; 53(32):7804-13. PubMed ID: 25403007 [TBL] [Abstract][Full Text] [Related]
4. Electromagnetic optimization of the integrated magnetorheological jet polishing tool and its application in millimeter-scale discontinuous structure processing. Yang H; Cheng H; Wu H; Wang T Appl Opt; 2017 Apr; 56(11):3162-3170. PubMed ID: 28414376 [TBL] [Abstract][Full Text] [Related]
5. Controlling mid-spatial frequency errors in magnetorheological jet polishing with a simple vertical model. Wang T; Cheng H; Yang H; Wu W; Tam H Appl Opt; 2015 Jul; 54(21):6433-40. PubMed ID: 26367825 [TBL] [Abstract][Full Text] [Related]
6. Multiplex path for magnetorheological jet polishing with vertical impinging. Wang T; Cheng H; Chen Y; Tam H Appl Opt; 2014 Apr; 53(10):2012-9. PubMed ID: 24787155 [TBL] [Abstract][Full Text] [Related]
7. Compensating for velocity truncation during subaperture polishing by controllable and time-variant tool influence functions. Dong Z; Cheng H; Tam HY Appl Opt; 2015 Feb; 54(5):1167-74. PubMed ID: 25968037 [TBL] [Abstract][Full Text] [Related]
8. Distribution model of the surface roughness in magnetorheological jet polishing. Hai K; Li L; Hu H; Zhang Z; Bai Y; Luo X; Yi L; Yang X; Xue D; Zhang X Appl Opt; 2020 Oct; 59(28):8740-8750. PubMed ID: 33104556 [TBL] [Abstract][Full Text] [Related]
9. Modified subaperture tool influence functions of a flat-pitch polisher with reverse-calculated material removal rate. Dong Z; Cheng H; Tam HY Appl Opt; 2014 Apr; 53(11):2455-64. PubMed ID: 24787418 [TBL] [Abstract][Full Text] [Related]
10. Modified dwell time optimization model and its applications in subaperture polishing. Dong Z; Cheng H; Tam HY Appl Opt; 2014 May; 53(15):3213-24. PubMed ID: 24922206 [TBL] [Abstract][Full Text] [Related]
11. Novel cavitation fluid jet polishing process based on negative pressure effects. Chen F; Wang H; Tang Y; Yin S; Huang S; Zhang G Ultrason Sonochem; 2018 Apr; 42():339-346. PubMed ID: 29429678 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms influencing and prediction of tool influence function spots during hemispherical sub-aperture tool polishing on fused silica. Suratwala T; Menapace J; Steele R; Wong L; Tham G; Ray N; Bauman B; Gregory M; Hordin T Appl Opt; 2021 Jan; 60(1):201-214. PubMed ID: 33362091 [TBL] [Abstract][Full Text] [Related]
13. Theoretical Modeling Method for Material Removal Characteristics of Abrasive Water Jet Polishing under Rotating Oblique Incidence. Zhang Z; Song C; Shi F; Tie G; Zhang W; Wang B; Tian Y; Hou Z Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296043 [TBL] [Abstract][Full Text] [Related]
14. Removal of single point diamond-turning marks by abrasive jet polishing. Li ZZ; Wang JM; Peng XQ; Ho LT; Yin ZQ; Li SY; Cheung CF Appl Opt; 2011 Jun; 50(16):2458-63. PubMed ID: 21629327 [TBL] [Abstract][Full Text] [Related]
15. Research on the tool influence function characteristics of magnetorheological precession finishing (MRPF). Liu J; Huang P; Peng Y Opt Express; 2024 Mar; 32(7):12537-12550. PubMed ID: 38571074 [TBL] [Abstract][Full Text] [Related]
16. Experimental investigation of flow-focusing-assisted magnetorheological jet polishing. Liu Q; Dong Z; Chen Z; Shen Y; Li Q; An P Appl Opt; 2022 Jul; 61(21):6366-6373. PubMed ID: 36256252 [TBL] [Abstract][Full Text] [Related]
17. Optimization and application of influence function in abrasive jet polishing. Li Z; Li S; Dai Y; Peng X Appl Opt; 2010 May; 49(15):2947-53. PubMed ID: 20490257 [TBL] [Abstract][Full Text] [Related]
18. Optimization of the Morphology of the Removal Function for Rotating Abrasive Water Jet Polishing. Tie G; Zhang Z; Wang B; Song C; Shi F; Zhang W; Si H Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893368 [TBL] [Abstract][Full Text] [Related]
19. Parametric modeling of edge effects for polishing tool influence functions. Kim DW; Park WH; Kim SW; Burge JH Opt Express; 2009 Mar; 17(7):5656-65. PubMed ID: 19333334 [TBL] [Abstract][Full Text] [Related]
20. Modeling the hydrodynamic impact on the tool influence function during hemispherical subaperture optical polishing. Ray NJ; Suratwala T; Menapace J; Wong L; Steele W; Tham G; Bauman B Appl Opt; 2022 Jun; 61(18):5392-5400. PubMed ID: 36256106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]