These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29726504)

  • 41. Experimental Study on the Effects of Alumina Abrasive Particle Behavior in MR Polishing for MEMS Applications.
    Kim DW; Cho MW; Seo TI; Shin YJ
    Sensors (Basel); 2008 Jan; 8(1):222-235. PubMed ID: 27879705
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mid-high-frequency error suppression of small optical aspheric molds.
    Zhang J; Wang H; Zhuo S; Kuang J; Wu Y; Zhang J; Zhu X; Ma S; Yao H
    Appl Opt; 2023 Apr; 62(11):2766-2775. PubMed ID: 37133117
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Time-varying tool influence function model of bonnet polishing for aspheric surfaces.
    Zhong B; Wang C; Chen X; Wang J
    Appl Opt; 2019 Feb; 58(4):1101-1109. PubMed ID: 30874159
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of workpiece curvature on the tool influence function during hemispherical sub-aperture tool glass polishing.
    Suratwala T; Menapace J; Tham G; Steele R; Wong L; Ray N; Bauman B; Gregory M; Hordin T
    Appl Opt; 2021 Feb; 60(4):1041-1050. PubMed ID: 33690410
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Edge effect in fluid jet polishing.
    Guo P; Fang H; Yu J
    Appl Opt; 2006 Sep; 45(26):6729-35. PubMed ID: 16926905
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Statistical perception of the chaotic fabrication error and the self-adaptive processing decision in ultra-precision optical polishing.
    Li H; Wan S; Niu Z; Guo H; Zhang L; Lu Q; Wei C; Shao J
    Opt Express; 2023 Feb; 31(5):7707-7724. PubMed ID: 36859896
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acidic magnetorheological finishing of infrared polycrystalline materials.
    Salzman S; Romanofsky HJ; West G; Marshall KL; Jacobs SD; Lambropoulos JC
    Appl Opt; 2016 Oct; 55(30):8448-8456. PubMed ID: 27828155
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Restraint of path effect on optical surface in magnetorheological jet polishing.
    Wang T; Cheng H; Zhang W; Yang H; Wu W
    Appl Opt; 2016 Feb; 55(4):935-42. PubMed ID: 26836103
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics.
    Shafrir SN; Romanofsky HJ; Skarlinski M; Wang M; Miao C; Salzman S; Chartier T; Mici J; Lambropoulos JC; Shen R; Yang H; Jacobs SD
    Appl Opt; 2009 Dec; 48(35):6797-810. PubMed ID: 20011021
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges.
    Li H; Walker D; Yu G; Sayle A; Messelink W; Evans R; Beaucamp A
    Opt Express; 2013 Jan; 21(1):370-81. PubMed ID: 23388930
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions.
    Kim DW; Kim SW; Burge JH
    Opt Express; 2009 Nov; 17(24):21850-66. PubMed ID: 19997430
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evolution law of comet-shaped defects in magnetorheological finishing.
    Shu Q; Hai K; Huang W; Jiang L; Yuan S; Li K; Sun P; Tian D; Zhang Y
    Appl Opt; 2022 Jan; 61(3):691-698. PubMed ID: 35200773
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Research on the influence of the non-stationary effect of the magnetorheological finishing removal function on mid-frequency errors of optical component surfaces.
    Wang B; Tie G; Shi F; Song C; Guo S
    Opt Express; 2023 Oct; 31(21):35016-35031. PubMed ID: 37859243
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of temperature on the removal efficiency of KDP crystal during the process of magnetorheological water-dissolution polishing.
    Zhang Y; Dai Y; Tie G; Hu H
    Appl Opt; 2016 Oct; 55(29):8308-8315. PubMed ID: 27828080
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Model of the material removal function and an experimental study on a magnetorheological finishing process using a small ball-end permanent-magnet polishing head.
    Chen M; Liu H; Cheng J; Yu B; Fang Z
    Appl Opt; 2017 Jul; 56(19):5573-5582. PubMed ID: 29047518
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation on form-preserving polishing of side-wall surfaces via an active fluid jet.
    Zhang H; Li Z; Wang P; Zhang X
    Opt Express; 2024 Feb; 32(5):7987-8009. PubMed ID: 38439467
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Study on Material Removal Model by Reciprocating Magnetorheological Polishing.
    Wang R; Xiu S; Sun C; Li S; Kong X
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33917829
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Accurately predicting the tool influence function to achieve high-precision magnetorheological finishing using robots.
    Cheng R; Li L; Xue D; Li X; Bai Y; Luo X; Zhang X
    Opt Express; 2023 Oct; 31(21):34917-34936. PubMed ID: 37859236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface Quality Control Strategy of Aspherical Mold Based on Screw Feed Polishing of Small Polishing Tool.
    Zhang J; Wang H; Zhu X; Yao H; Zhuo S; Ma S; Zhan D; Cai N
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888315
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces.
    He Z; Hai K; Li K; Yu J; Wu L; Zhang L; Su X; Cai L; Huang W; Hang W
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.