These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29726521)

  • 1. High-speed computer-generated hologram based on resource optimization for block-based parallel processing.
    Kim DW; Lee YH; Seo YH
    Appl Opt; 2018 May; 57(13):3511-3518. PubMed ID: 29726521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast distributed large-pixel-count hologram computation using a GPU cluster.
    Pan Y; Xu X; Liang X
    Appl Opt; 2013 Sep; 52(26):6562-71. PubMed ID: 24085134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hardware architecture of high-performance digital hologram generator on the basis of a pixel-by-pixel calculation scheme.
    Seo YH; Lee YH; Yoo JS; Kim DW
    Appl Opt; 2012 Jun; 51(18):4003-12. PubMed ID: 22722274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-based hardware architecture for full-parallel generation algorithm of digital holograms.
    Seo YH; Choi HJ; Yoo JS; Kim DW
    Opt Express; 2011 Apr; 19(9):8750-61. PubMed ID: 21643127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation method for computer-generated holograms with cylindrical basic object light by using a graphics processing unit.
    Sakata H; Hosoyachi K; Yang CY; Sakamoto Y
    Appl Opt; 2011 Dec; 50(34):H306-14. PubMed ID: 22193022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system.
    Takada N; Shimobaba T; Nakayama H; Shiraki A; Okada N; Oikawa M; Masuda N; Ito T
    Appl Opt; 2012 Oct; 51(30):7303-7. PubMed ID: 23089785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of real-time large computer generated hologram using wavefront recording method.
    Weng J; Shimobaba T; Okada N; Nakayama H; Oikawa M; Masuda N; Ito T
    Opt Express; 2012 Feb; 20(4):4018-23. PubMed ID: 22418159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast CGH computation using S-LUT on GPU.
    Pan Y; Xu X; Solanki S; Liang X; Tanjung RB; Tan C; Chong TC
    Opt Express; 2009 Oct; 17(21):18543-55. PubMed ID: 20372585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.
    Kwon MW; Kim SC; Yoon SE; Ho YS; Kim ES
    Opt Express; 2015 Feb; 23(3):2101-20. PubMed ID: 25836082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-fast digital tomosynthesis reconstruction using general-purpose GPU programming for image-guided radiation therapy.
    Park JC; Park SH; Kim JS; Han Y; Cho MK; Kim HK; Liu Z; Jiang SB; Song B; Song WY
    Technol Cancer Res Treat; 2011 Aug; 10(4):295-306. PubMed ID: 21728386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decomposition method for fast computation of gigapixel-sized Fresnel holograms on a graphics processing unit cluster.
    Jackin BJ; Watanabe S; Ootsu K; Ohkawa T; Yokota T; Hayasaki Y; Yatagai T; Baba T
    Appl Opt; 2018 Apr; 57(12):3134-3145. PubMed ID: 29714347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-directional motion-compensation mask-based novel look-up table on graphics processing units for video-rate generation of digital holographic videos of three-dimensional scenes.
    Kwon MW; Kim SC; Kim ES
    Appl Opt; 2016 Jan; 55(3):A22-31. PubMed ID: 26835954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superpixel-based sub-hologram method for real-time color three-dimensional holographic display with large size.
    Ma H; Wei C; Wei J; Han Y; Pi D; Yang Y; Zhao W; Wang Y; Liu J
    Opt Express; 2022 Aug; 30(17):31287-31297. PubMed ID: 36242214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram.
    Kim SC; Kim JH; Kim ES
    Appl Opt; 2011 Jul; 50(19):3375-82. PubMed ID: 21743543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acceleration of integral imaging based incoherent Fourier hologram capture using graphic processing unit.
    Jeong KM; Kim HS; Hong SI; Lee SK; Jo NY; Kim YS; Lim HG; Park JH
    Opt Express; 2012 Oct; 20(21):23735-43. PubMed ID: 23188339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL.
    Shimobaba T; Ito T; Masuda N; Ichihashi Y; Takada N
    Opt Express; 2010 May; 18(10):9955-60. PubMed ID: 20588849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast occlusion processing for a polygon-based computer-generated hologram using the slice-by-slice silhouette method.
    Liu JP; Liao HK
    Appl Opt; 2018 Jan; 57(1):A215-A221. PubMed ID: 29328148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Out-of-core GPU 2D-shift-FFT algorithm for ultra-high-resolution hologram generation.
    Lee J; Kang H; Yeom HJ; Cheon S; Park J; Kim D
    Opt Express; 2021 Jun; 29(12):19094-19112. PubMed ID: 34154151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient calculation scheme for high pixel resolution non-hogel-based computer generated hologram from light field.
    Park JH
    Opt Express; 2020 Mar; 28(5):6663-6683. PubMed ID: 32225909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.