These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 29726604)

  • 1. Thermodynamic Insight into the Effects of Water Displacement and Rearrangement upon Ligand Modifications using Molecular Dynamics Simulations.
    Wahl J; Smieško M
    ChemMedChem; 2018 Jul; 13(13):1325-1335. PubMed ID: 29726604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining solvent thermodynamic profiles with functionality maps of the Hsp90 binding site to predict the displacement of water molecules.
    Haider K; Huggins DJ
    J Chem Inf Model; 2013 Oct; 53(10):2571-86. PubMed ID: 24070451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.
    Uehara S; Tanaka S
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27886114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.
    Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U
    J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of Thermodynamic Properties of Bound Water Molecules.
    Yang Y; Abdallah AHA; Lill MA
    Methods Mol Biol; 2018; 1762():389-402. PubMed ID: 29594782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril.
    Nguyen CN; Young TK; Gilson MK
    J Chem Phys; 2012 Jul; 137(4):044101. PubMed ID: 22852591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series.
    Güssregen S; Matter H; Hessler G; Lionta E; Heil J; Kast SM
    J Chem Inf Model; 2017 Jul; 57(7):1652-1666. PubMed ID: 28565907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Study of Hydration Environments through Hydration Sites.
    Irwin BWJ; Vukovic S; Payne MC; Huggins DJ
    J Phys Chem B; 2019 May; 123(19):4220-4229. PubMed ID: 31025866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.
    Arcon JP; Defelipe LA; Modenutti CP; López ED; Alvarez-Garcia D; Barril X; Turjanski AG; Martí MA
    J Chem Inf Model; 2017 Apr; 57(4):846-863. PubMed ID: 28318252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the accuracy of inhomogeneous fluid solvation theory in predicting hydration free energies of simple solutes.
    Huggins DJ; Payne MC
    J Phys Chem B; 2013 Jul; 117(27):8232-44. PubMed ID: 23763625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies.
    Genheden S; Ryde U
    Proteins; 2012 May; 80(5):1326-42. PubMed ID: 22274991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent effects on ligand binding to a serine protease.
    Gopal SM; Klumpers F; Herrmann C; Schäfer LV
    Phys Chem Chem Phys; 2017 May; 19(17):10753-10766. PubMed ID: 28116375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of buried water clusters at a protein-ligand binding interface.
    Li Z; Lazaridis T
    J Phys Chem B; 2006 Jan; 110(3):1464-75. PubMed ID: 16471698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attach-Pull-Release Calculations of Ligand Binding and Conformational Changes on the First BRD4 Bromodomain.
    Heinzelmann G; Henriksen NM; Gilson MK
    J Chem Theory Comput; 2017 Jul; 13(7):3260-3275. PubMed ID: 28564537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculating Water Thermodynamics in the Binding Site of Proteins - Applications of WaterMap to Drug Discovery.
    Cappel D; Sherman W; Beuming T
    Curr Top Med Chem; 2017; 17(23):2586-2598. PubMed ID: 28413953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The performance of ANI-ML potentials for ligand-n(H
    Temel M; Tayfuroglu O; Kocak A
    J Comput Chem; 2023 Feb; 44(4):559-569. PubMed ID: 36324248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations.
    Misini Ignjatović M; Caldararu O; Dong G; Muñoz-Gutierrez C; Adasme-Carreño F; Ryde U
    J Comput Aided Mol Des; 2016 Sep; 30(9):707-730. PubMed ID: 27565797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.
    Rocklin GJ; Mobley DL; Dill KA; Hünenberger PH
    J Chem Phys; 2013 Nov; 139(18):184103. PubMed ID: 24320250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.