These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 29726965)
1. PBRpredict-Suite: a suite of models to predict peptide-recognition domain residues from protein sequence. Iqbal S; Hoque MT Bioinformatics; 2018 Oct; 34(19):3289-3299. PubMed ID: 29726965 [TBL] [Abstract][Full Text] [Related]
2. StackDPPred: a stacking based prediction of DNA-binding protein from sequence. Mishra A; Pokhrel P; Hoque MT Bioinformatics; 2019 Feb; 35(3):433-441. PubMed ID: 30032213 [TBL] [Abstract][Full Text] [Related]
3. PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning. Wei L; Zhou C; Su R; Zou Q Bioinformatics; 2019 Nov; 35(21):4272-4280. PubMed ID: 30994882 [TBL] [Abstract][Full Text] [Related]
4. Structure-based prediction of protein- peptide binding regions using Random Forest. Taherzadeh G; Zhou Y; Liew AW; Yang Y Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926 [TBL] [Abstract][Full Text] [Related]
5. GOLabeler: improving sequence-based large-scale protein function prediction by learning to rank. You R; Zhang Z; Xiong Y; Sun F; Mamitsuka H; Zhu S Bioinformatics; 2018 Jul; 34(14):2465-2473. PubMed ID: 29522145 [TBL] [Abstract][Full Text] [Related]
6. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features. Zhou H; Yang Y; Shen HB Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784 [TBL] [Abstract][Full Text] [Related]
7. A graph kernel approach for alignment-free domain-peptide interaction prediction with an application to human SH3 domains. Kundu K; Costa F; Backofen R Bioinformatics; 2013 Jul; 29(13):i335-43. PubMed ID: 23813002 [TBL] [Abstract][Full Text] [Related]
8. The POPPs: clustering and searching using peptide probability profiles. Wise MJ Bioinformatics; 2002; 18 Suppl 1():S38-45. PubMed ID: 12169529 [TBL] [Abstract][Full Text] [Related]
9. Domain Interaction Footprint: a multi-classification approach to predict domain-peptide interactions. Schillinger C; Boisguerin P; Krause G Bioinformatics; 2009 Jul; 25(13):1632-9. PubMed ID: 19376827 [TBL] [Abstract][Full Text] [Related]
11. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition. Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145 [TBL] [Abstract][Full Text] [Related]
12. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation. Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751 [TBL] [Abstract][Full Text] [Related]
13. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Wei L; Zhou C; Chen H; Song J; Su R Bioinformatics; 2018 Dec; 34(23):4007-4016. PubMed ID: 29868903 [TBL] [Abstract][Full Text] [Related]
14. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Jones DT; Singh T; Kosciolek T; Tetchner S Bioinformatics; 2015 Apr; 31(7):999-1006. PubMed ID: 25431331 [TBL] [Abstract][Full Text] [Related]
15. Predicting protein-peptide interactions via a network-based motif sampler. Reiss DJ; Schwikowski B Bioinformatics; 2004 Aug; 20 Suppl 1():i274-82. PubMed ID: 15262809 [TBL] [Abstract][Full Text] [Related]
16. Improving Sequence-Based Prediction of Protein-Peptide Binding Residues by Introducing Intrinsic Disorder and a Consensus Method. Zhao Z; Peng Z; Yang J J Chem Inf Model; 2018 Jul; 58(7):1459-1468. PubMed ID: 29895149 [TBL] [Abstract][Full Text] [Related]
17. A regularized discriminative model for the prediction of protein-peptide interactions. Lehrach WP; Husmeier D; Williams CK Bioinformatics; 2006 Mar; 22(5):532-40. PubMed ID: 16397010 [TBL] [Abstract][Full Text] [Related]
18. PRBP: Prediction of RNA-Binding Proteins Using a Random Forest Algorithm Combined with an RNA-Binding Residue Predictor. Ma X; Guo J; Xiao K; Sun X IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1385-93. PubMed ID: 26671809 [TBL] [Abstract][Full Text] [Related]
19. SCRIBER: accurate and partner type-specific prediction of protein-binding residues from proteins sequences. Zhang J; Kurgan L Bioinformatics; 2019 Jul; 35(14):i343-i353. PubMed ID: 31510679 [TBL] [Abstract][Full Text] [Related]
20. iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences. Chen Z; Zhao P; Li F; Leier A; Marquez-Lago TT; Wang Y; Webb GI; Smith AI; Daly RJ; Chou KC; Song J Bioinformatics; 2018 Jul; 34(14):2499-2502. PubMed ID: 29528364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]