BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29727176)

  • 1. Through-Space Intervalence Charge Transfer as a Mechanism for Charge Delocalization in Metal-Organic Frameworks.
    Hua C; Doheny PW; Ding B; Chan B; Yu M; Kepert CJ; D'Alessandro DM
    J Am Chem Soc; 2018 May; 140(21):6622-6630. PubMed ID: 29727176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substituent effects on through-space intervalence charge transfer in cofacial metal-organic frameworks.
    Doheny PW; Hua C; Chan B; Tuna F; Collison D; Kepert CJ; D'Alessandro DM
    Faraday Discuss; 2021 Oct; 231(0):152-167. PubMed ID: 34251000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of the mixed-valence and intervalence charge transfer properties of a cofacial metal-organic framework
    Doheny PW; Clegg JK; Tuna F; Collison D; Kepert CJ; D'Alessandro DM
    Chem Sci; 2020 Apr; 11(20):5213-5220. PubMed ID: 34122977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of structure-activity relationships on through-space intervalence charge transfer in metal-organic frameworks with cofacial redox-active units.
    Ding B; Hua C; Kepert CJ; D'Alessandro DM
    Chem Sci; 2019 Feb; 10(5):1392-1400. PubMed ID: 30809356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intervalence (charge-resonance) transitions in organic mixed-valence systems. Through-space versus through-bond electron transfer between bridged aromatic (redox) centers.
    Sun DL; Rosokha SV; Lindeman SV; Kochi JK
    J Am Chem Soc; 2003 Dec; 125(51):15950-63. PubMed ID: 14677987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of intervalence charge transfer interaction between π-stacked mixed valent tetrathiafulvalene ligands on the electrical conductivity of 3D metal-organic frameworks.
    Zhang S; Panda DK; Yadav A; Zhou W; Saha S
    Chem Sci; 2021 Oct; 12(40):13379-13391. PubMed ID: 34777756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Molecular Separation on Through-Space Intervalence Transient Charge Transfer in Metal-Organic Frameworks with Cofacially arranged Redox Pairs.
    Nath A; Kumar V; Shukla A; Ghosh HN; Mandal S
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202308034. PubMed ID: 37332091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of charge transfer in donor/acceptor metal-organic frameworks.
    Miyasaka H
    Acc Chem Res; 2013 Feb; 46(2):248-57. PubMed ID: 23128042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and computational studies of a multi-electron donor-acceptor ligand containing the thiazolo[5,4-d]thiazole core and its incorporation into a metal-organic framework.
    Rizzuto FJ; Faust TB; Chan B; Hua C; D'Alessandro DM; Kepert CJ
    Chemistry; 2014 Dec; 20(52):17597-605. PubMed ID: 25346539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cofacial metal-organic framework based photocathode for carbon dioxide reduction.
    Ding B; Chan B; Proschogo N; Solomon MB; Kepert CJ; D'Alessandro DM
    Chem Sci; 2021 Jan; 12(10):3608-3614. PubMed ID: 34163634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge Delocalization and Bulk Electronic Conductivity in the Mixed-Valence Metal-Organic Framework Fe(1,2,3-triazolate)
    Park JG; Aubrey ML; Oktawiec J; Chakarawet K; Darago LE; Grandjean F; Long GJ; Long JR
    J Am Chem Soc; 2018 Jul; 140(27):8526-8534. PubMed ID: 29893567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoscopic features of charge generation in organic semiconductors.
    Savoie BM; Jackson NE; Chen LX; Marks TJ; Ratner MA
    Acc Chem Res; 2014 Nov; 47(11):3385-94. PubMed ID: 25051395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed Valency as a Strategy for Achieving Charge Delocalization in Semiconducting and Conducting Framework Materials.
    Murase R; Leong CF; D'Alessandro DM
    Inorg Chem; 2017 Dec; 56(23):14373-14382. PubMed ID: 29125761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interligand Charge-Transfer Interactions in Electroactive Coordination Frameworks Based on N, N'-Dicyanoquinonediimine (DCNQI).
    Elliott RW; Usov PM; Abrahams BF; Chan B; Robson R; D'Alessandro DM
    Inorg Chem; 2018 Aug; 57(16):9766-9774. PubMed ID: 29629755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoreticular Linker Substitution in Conductive Metal-Organic Frameworks with Through-Space Transport Pathways.
    Xie LS; Park SS; Chmielewski MJ; Liu H; Kharod RA; Yang L; Campbell MG; Dincă M
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19623-19626. PubMed ID: 32343881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductive Metal-Organic Frameworks: Electronic Structure and Electrochemical Applications.
    Nath A; Asha KS; Mandal S
    Chemistry; 2021 Aug; 27(45):11482-11538. PubMed ID: 33857340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework.
    Dong R; Han P; Arora H; Ballabio M; Karakus M; Zhang Z; Shekhar C; Adler P; Petkov PS; Erbe A; Mannsfeld SCB; Felser C; Heine T; Bonn M; Feng X; Cánovas E
    Nat Mater; 2018 Nov; 17(11):1027-1032. PubMed ID: 30323335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex.
    Rosokha SV; Kochi JK
    Acc Chem Res; 2008 May; 41(5):641-53. PubMed ID: 18380446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically Conductive Porous Metal-Organic Frameworks.
    Sun L; Campbell MG; Dincă M
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3566-79. PubMed ID: 26749063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse π-π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal-organic frameworks.
    Xie LS; Alexandrov EV; Skorupskii G; Proserpio DM; Dincă M
    Chem Sci; 2019 Oct; 10(37):8558-8565. PubMed ID: 31762972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.