These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29727283)

  • 1. 3-D Pose Estimation of Articulated Instruments in Robotic Minimally Invasive Surgery.
    Allan M; Ourselin S; Hawkes DJ; Kelly JD; Stoyanov D
    IEEE Trans Med Imaging; 2018 May; 37(5):1204-1213. PubMed ID: 29727283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined 2D and 3D tracking of surgical instruments for minimally invasive and robotic-assisted surgery.
    Du X; Allan M; Dore A; Ourselin S; Hawkes D; Kelly JD; Stoyanov D
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1109-19. PubMed ID: 27038963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Filtering Approach for Image-Guided Surgery With a Highly Articulated Surgical Snake Robot.
    Tully S; Choset H
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):392-402. PubMed ID: 26241966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hand-Held Non-Robotic Surgical Tool With a Wrist and an Elbow.
    Riojas KE; Anderson PL; Lathrop RA; Herrell SD; Rucker DC; Webster Iii RJ
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3176-3184. PubMed ID: 30835205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the Human Brain Capable of Controlling Seven Degrees of Freedom?
    Dewaele F; De Pauw T; Kalmar A; Pattyn P; Van Herzeele I; Mottrie A; Van Nieuwenhove Y; Van Roost D
    J Surg Res; 2019 Jun; 238():1-9. PubMed ID: 30721780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ERegPose: An explicit regression based 6D pose estimation for snake-like wrist-type surgical instruments.
    Li J; Ma Z; Sun X; Su H
    Int J Med Robot; 2024 Jun; 20(3):e2640. PubMed ID: 38794828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. External force estimation and implementation in robotically assisted minimally invasive surgery.
    Sang H; Yun J; Monfaredi R; Wilson E; Fooladi H; Cleary K
    Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 28466997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, Modelling and Teleoperation of a 2 mm Diameter Compliant Instrument for the da Vinci Platform.
    Francis P; Eastwood KW; Bodani V; Looi T; Drake JM
    Ann Biomed Eng; 2018 Oct; 46(10):1437-1449. PubMed ID: 29736692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of stereo endoscope system with its innovative master interface for continuous surgical operation.
    Kim M; Lee C; Hong N; Kim YJ; Kim S
    Biomed Eng Online; 2017 Jun; 16(1):81. PubMed ID: 28646865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward detection and localization of instruments in minimally invasive surgery.
    Allan M; Ourselin S; Thompson S; Hawkes DJ; Kelly J; Stoyanov D
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):1050-8. PubMed ID: 23192482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Articulated Multi-Instrument 2-D Pose Estimation Using Fully Convolutional Networks.
    Du X; Kurmann T; Chang PL; Allan M; Ourselin S; Sznitman R; Kelly JD; Stoyanov D
    IEEE Trans Med Imaging; 2018 May; 37(5):1276-1287. PubMed ID: 29727290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery.
    He C; Wang S; Sang H; Li J; Zhang L
    Int J Med Robot; 2014 Sep; 10(3):314-24. PubMed ID: 24030887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Articulated minimally invasive surgical instrument based on compliant mechanism.
    Arata J; Kogiso S; Sakaguchi M; Nakadate R; Oguri S; Uemura M; Byunghyun C; Akahoshi T; Ikeda T; Hashizume M
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1837-43. PubMed ID: 25698401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Snake-like surgical forceps for robot-assisted minimally invasive surgery.
    Jin X; Zhao J; Feng M; Hao L; Li Q
    Int J Med Robot; 2018 Aug; 14(4):e1908. PubMed ID: 29570936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adaptive and fully automatic method for estimating the 3D position of bendable instruments using endoscopic images.
    Cabras P; Nageotte F; Zanne P; Doignon C
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28387448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel microwave tool for robotic liver resection in minimally invasive surgery.
    Brancadoro M; Dimitri M; Boushaki MN; Staderini F; Sinibaldi E; Capineri L; Cianchi F; Biffi Gentili G; Menciassi A
    Minim Invasive Ther Allied Technol; 2022 Jan; 31(1):42-49. PubMed ID: 32255393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a novel robotic platform with controllable stiffness manipulation arms for laparoendoscopic single-site surgery (LESS).
    Wang J; Wang S; Li J; Ren X; Briggs RM
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28782245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image partitioning and illumination in image-based pose detection for teleoperated flexible endoscopes.
    Bell CS; Obstein KL; Valdastri P
    Artif Intell Med; 2013 Nov; 59(3):185-96. PubMed ID: 24188575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic localization of the da Vinci surgical instrument tips in 3-D transrectal ultrasound.
    Mohareri O; Ramezani M; Adebar TK; Abolmaesumi P; Salcudean SE
    IEEE Trans Biomed Eng; 2013 Sep; 60(9):2663-72. PubMed ID: 23674418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Application of Da Vinci robotic surgery to hernia repair].
    Tian W; Fei Y
    Zhonghua Wei Chang Wai Ke Za Zhi; 2018 Jul; 21(7):740-743. PubMed ID: 30051439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.