These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29727581)

  • 1. On-the-Fly Specifications of Reaction Coordinates in Parallel Cascade Selection Molecular Dynamics Accelerate Conformational Transitions of Proteins.
    Harada R; Shigeta Y
    J Chem Theory Comput; 2018 Jun; 14(6):3332-3341. PubMed ID: 29727581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nontargeted Parallel Cascade Selection Molecular Dynamics Based on a Nonredundant Selection Rule for Initial Structures Enhances Conformational Sampling of Proteins.
    Harada R; Sladek V; Shigeta Y
    J Chem Inf Model; 2019 Dec; 59(12):5198-5206. PubMed ID: 31697897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel Cascade Selection Molecular Dynamics (PaCS-MD) to generate conformational transition pathway.
    Harada R; Kitao A
    J Chem Phys; 2013 Jul; 139(3):035103. PubMed ID: 23883057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection rules on initial structures in parallel cascade selection molecular dynamics affect conformational sampling efficiency.
    Harada R; Shigeta Y
    J Mol Graph Model; 2018 Oct; 85():153-159. PubMed ID: 30205290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nontargeted Parallel Cascade Selection Molecular Dynamics Using Time-Localized Prediction of Conformational Transitions in Protein Dynamics.
    Harada R; Sladek V; Shigeta Y
    J Chem Theory Comput; 2019 Sep; 15(9):5144-5153. PubMed ID: 31411882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nontargeted Parallel Cascade Selection Molecular Dynamics for Enhancing the Conformational Sampling of Proteins.
    Harada R; Kitao A
    J Chem Theory Comput; 2015 Nov; 11(11):5493-502. PubMed ID: 26574337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel cascade selection molecular dynamics to screen for protein complexes generated by rigid docking.
    Harada R; Yoshino R; Nishizawa H; Shigeta Y
    J Mol Graph Model; 2019 Nov; 92():94-99. PubMed ID: 31344548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Conformational Sampling Method Based on Anomaly Detection Parallel Cascade Selection Molecular Dynamics: ad-PaCS-MD.
    Harada R; Yamaguchi K; Shigeta Y
    J Chem Theory Comput; 2020 Oct; 16(10):6716-6725. PubMed ID: 32926622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How low-resolution structural data predict the conformational changes of a protein: a study on data-driven molecular dynamics simulations.
    Harada R; Shigeta Y
    Phys Chem Chem Phys; 2018 Jul; 20(26):17790-17798. PubMed ID: 29922770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-Shuffled Structural Dissimilarity Sampling Based on a Root-Mean-Square Deviation.
    Harada R; Shigeta Y
    J Chem Inf Model; 2018 Jul; 58(7):1397-1405. PubMed ID: 29882667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Conformational Sampling of Collective Motions of Proteins with Principal Component Analysis-Based Parallel Cascade Selection Molecular Dynamics.
    Yasuda T; Shigeta Y; Harada R
    J Chem Inf Model; 2020 Aug; 60(8):4021-4029. PubMed ID: 32786508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independent Nontargeted Parallel Cascade Selection Molecular Dynamics (Ino-PaCS-MD) to Enhance the Conformational Sampling of Proteins.
    Yasuda T; Morita R; Shigeta Y; Harada R
    J Chem Theory Comput; 2021 Sep; 17(9):5933-5943. PubMed ID: 34410106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins.
    Harada R; Takano Y; Shigeta Y
    J Chem Phys; 2014 Mar; 140(12):125103. PubMed ID: 24697482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-shuffled parallel cascade selection molecular dynamics accelerates the structural transitions of proteins.
    Harada R; Shigeta Y
    J Comput Chem; 2017 Dec; 38(31):2671-2674. PubMed ID: 28861895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple, yet powerful methodologies for conformational sampling of proteins.
    Harada R; Takano Y; Baba T; Shigeta Y
    Phys Chem Chem Phys; 2015 Mar; 17(9):6155-73. PubMed ID: 25659594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural dissimilarity sampling with dynamically self-guiding selection.
    Harada R; Shigeta Y
    J Comput Chem; 2017 Aug; 38(22):1921-1929. PubMed ID: 28558119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand Binding Path Sampling Based on Parallel Cascade Selection Molecular Dynamics: LB-PaCS-MD.
    Aida H; Shigeta Y; Harada R
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Validation of Reaction Coordinates Describing Protein Functional Motion: Hierarchical Dynamics of T4 Lysozyme.
    Ernst M; Wolf S; Stock G
    J Chem Theory Comput; 2017 Oct; 13(10):5076-5088. PubMed ID: 28915045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Conformational Search Based on Structural Dissimilarity Sampling: Applications for Reproducing Structural Transitions of Proteins.
    Harada R; Shigeta Y
    J Chem Theory Comput; 2017 Mar; 13(3):1411-1423. PubMed ID: 28170260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparsity-weighted outlier FLOODing (OFLOOD) method: Efficient rare event sampling method using sparsity of distribution.
    Harada R; Nakamura T; Shigeta Y
    J Comput Chem; 2016 Mar; 37(8):724-38. PubMed ID: 26611770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.