BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29727687)

  • 21. Sarcomeric disorganization and nemaline bodies in muscle biopsies of patients with EXOSC3-related type 1 pontocerebellar hypoplasia.
    Pinto MM; Monges S; Malfatti E; Lubieniecki F; Lornage X; Alias L; Labasse C; Madelaine A; Fardeau M; Laporte J; Tizzano EF; Romero NB
    Muscle Nerve; 2019 Jan; 59(1):137-141. PubMed ID: 30025162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Homozygous EXOSC3 mutation c.92G→C, p.G31A is a founder mutation causing severe pontocerebellar hypoplasia type 1 among the Czech Roma.
    Schwabova J; Brozkova DS; Petrak B; Mojzisova M; Pavlickova K; Haberlova J; Mrazkova L; Hedvicakova P; Hornofova L; Kaluzova M; Fencl F; Krutova M; Zamecnik J; Seeman P
    J Neurogenet; 2013 Dec; 27(4):163-9. PubMed ID: 23883322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The RNA exosome and RNA exosome-linked disease.
    Morton DJ; Kuiper EG; Jones SK; Leung SW; Corbett AH; Fasken MB
    RNA; 2018 Feb; 24(2):127-142. PubMed ID: 29093021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pontocerebellar hypoplasia associated with p.Arg183Trp homozygous variant in EXOSC1 gene: A case report.
    Damseh NS; Obeidat AN; Ahammed KS; Al-Ashhab M; Awad MA; van Hoof A
    Am J Med Genet A; 2023 Jul; 191(7):1923-1928. PubMed ID: 37024942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A missense variant in EXOSC8 causes exon skipping and expands the phenotypic spectrum of pontocerebellar hypoplasia type 1C.
    Zaki MS; Abdel-Ghafar SF; Abdel-Hamid MS
    J Hum Genet; 2024 Feb; 69(2):79-84. PubMed ID: 38017281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two siblings with a novel variant of EXOSC3 extended phenotypic spectrum of pontocerebellar hypoplasia 1B to an exceptionally mild form.
    Mu W; Heller T; Barañano KW
    BMJ Case Rep; 2021 Jan; 14(1):. PubMed ID: 33462000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Risk of sudden cardiac death in EXOSC5-related disease.
    Calame DG; Herman I; Fatih JM; Du H; Akay G; Jhangiani SN; Coban-Akdemir Z; Milewicz DM; Gibbs RA; Posey JE; Marafi D; Hunter JV; Fan Y; Lupski JR; Miyake CY
    Am J Med Genet A; 2021 Aug; 185(8):2532-2540. PubMed ID: 34089229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel EXOSC3 pathogenic variant results in a mild course of neurologic disease with cerebellum involvement.
    Le Duc D; Horn S; Jamra RA; Schaper J; Wieczorek D; Redler S
    Eur J Med Genet; 2020 Feb; 63(2):103649. PubMed ID: 30986545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recessive mutation in EXOSC3 associates with mitochondrial dysfunction and pontocerebellar hypoplasia.
    Schottmann G; Picker-Minh S; Schwarz JM; Gill E; Rodenburg RJT; Stenzel W; Kaindl AM; Schuelke M
    Mitochondrion; 2017 Nov; 37():46-54. PubMed ID: 28687512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel EXOSC3 mutation causes complicated hereditary spastic paraplegia.
    Halevy A; Lerer I; Cohen R; Kornreich L; Shuper A; Gamliel M; Zimerman BE; Korabi I; Meiner V; Straussberg R; Lossos A
    J Neurol; 2014 Nov; 261(11):2165-9. PubMed ID: 25149867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A budding yeast model for human disease mutations in the
    Sterrett MC; Enyenihi L; Leung SW; Hess L; Strassler SE; Farchi D; Lee RS; Withers ES; Kremsky I; Baker RE; Basrai MA; van Hoof A; Fasken MB; Corbett AH
    RNA; 2021 Sep; 27(9):1046-1067. PubMed ID: 34162742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutations in EXOSC2 are associated with a novel syndrome characterised by retinitis pigmentosa, progressive hearing loss, premature ageing, short stature, mild intellectual disability and distinctive gestalt.
    Di Donato N; Neuhann T; Kahlert AK; Klink B; Hackmann K; Neuhann I; Novotna B; Schallner J; Krause C; Glass IA; Parnell SE; Benet-Pages A; Nissen AM; Berger W; Altmüller J; Thiele H; Weber BH; Schrock E; Dobyns WB; Bier A; Rump A
    J Med Genet; 2016 Jun; 53(6):419-25. PubMed ID: 26843489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecularly confirmed pontocerebellar hypoplasia in a large family from Slovakia with four severely affected children.
    Radvanska E; Pos Z; Zatkova A; Hyblova M; Bauer F; Szemes T; Kadasi L; Radvanszky J
    Bratisl Lek Listy; 2022; 123(8):568-572. PubMed ID: 35852507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EXOSC9 depletion attenuates P-body formation, stress resistance, and tumorigenicity of cancer cells.
    Yoshino S; Matsui Y; Fukui Y; Seki M; Yamaguchi K; Kanamori A; Saitoh Y; Shimamura T; Suzuki Y; Furukawa Y; Kaneko S; Seiki M; Murakami Y; Inoue JI; Sakamoto T
    Sci Rep; 2020 Jun; 10(1):9275. PubMed ID: 32518284
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathogenic variants in the survival of motor neurons complex gene GEMIN5 cause cerebellar atrophy.
    Saida K; Tamaoki J; Sasaki M; Haniffa M; Koshimizu E; Sengoku T; Maeda H; Kikuchi M; Yokoyama H; Sakamoto M; Iwama K; Sekiguchi F; Hamanaka K; Fujita A; Mizuguchi T; Ogata K; Miyake N; Miyatake S; Kobayashi M; Matsumoto N
    Clin Genet; 2021 Dec; 100(6):722-730. PubMed ID: 34569062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures.
    Knierim E; Hirata H; Wolf NI; Morales-Gonzalez S; Schottmann G; Tanaka Y; Rudnik-Schöneborn S; Orgeur M; Zerres K; Vogt S; van Riesen A; Gill E; Seifert F; Zwirner A; Kirschner J; Goebel HH; Hübner C; Stricker S; Meierhofer D; Stenzel W; Schuelke M
    Am J Hum Genet; 2016 Mar; 98(3):473-489. PubMed ID: 26924529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue-specific models of spinal muscular atrophy confirm a critical role of SMN in motor neurons from embryonic to adult stages.
    Laird AS; Mackovski N; Rinkwitz S; Becker TS; Giacomotto J
    Hum Mol Genet; 2016 May; 25(9):1728-38. PubMed ID: 26908606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2.
    Rossor AM; Oates EC; Salter HK; Liu Y; Murphy SM; Schule R; Gonzalez MA; Scoto M; Phadke R; Sewry CA; Houlden H; Jordanova A; Tournev I; Chamova T; Litvinenko I; Zuchner S; Herrmann DN; Blake J; Sowden JE; Acsadi G; Rodriguez ML; Menezes MP; Clarke NF; Auer Grumbach M; Bullock SL; Muntoni F; Reilly MM; North KN
    Brain; 2015 Feb; 138(Pt 2):293-310. PubMed ID: 25497877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutations in BICD2, which encodes a golgin and important motor adaptor, cause congenital autosomal-dominant spinal muscular atrophy.
    Neveling K; Martinez-Carrera LA; Hölker I; Heister A; Verrips A; Hosseini-Barkooie SM; Gilissen C; Vermeer S; Pennings M; Meijer R; te Riele M; Frijns CJ; Suchowersky O; MacLaren L; Rudnik-Schöneborn S; Sinke RJ; Zerres K; Lowry RB; Lemmink HH; Garbes L; Veltman JA; Schelhaas HJ; Scheffer H; Wirth B
    Am J Hum Genet; 2013 Jun; 92(6):946-54. PubMed ID: 23664116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pontocerebellar hypoplasia type 1: clinical spectrum and relevance of EXOSC3 mutations.
    Rudnik-Schöneborn S; Senderek J; Jen JC; Houge G; Seeman P; Puchmajerová A; Graul-Neumann L; Seidel U; Korinthenberg R; Kirschner J; Seeger J; Ryan MM; Muntoni F; Steinlin M; Sztriha L; Colomer J; Hübner C; Brockmann K; Van Maldergem L; Schiff M; Holzinger A; Barth P; Reardon W; Yourshaw M; Nelson SF; Eggermann T; Zerres K
    Neurology; 2013 Jan; 80(5):438-46. PubMed ID: 23284067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.