These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 29727765)
1. Engineered fungus derived FAD-dependent glucose dehydrogenase with acquired ability to utilize hexaammineruthenium(III) as an electron acceptor. Okurita M; Suzuki N; Loew N; Yoshida H; Tsugawa W; Mori K; Kojima K; Klonoff DC; Sode K Bioelectrochemistry; 2018 Oct; 123():62-69. PubMed ID: 29727765 [TBL] [Abstract][Full Text] [Related]
2. Mediator Preference of Two Different FAD-Dependent Glucose Dehydrogenases Employed in Disposable Enzyme Glucose Sensors. Loew N; Tsugawa W; Nagae D; Kojima K; Sode K Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29144384 [TBL] [Abstract][Full Text] [Related]
3. Designer fungus FAD glucose dehydrogenase capable of direct electron transfer. Ito K; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Ikebukuro K; Lin CE; La Belle J; Yoshida H; Sode K Biosens Bioelectron; 2019 Jan; 123():114-123. PubMed ID: 30057265 [TBL] [Abstract][Full Text] [Related]
4. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase. Yamashita Y; Ferri S; Huynh ML; Shimizu H; Yamaoka H; Sode K Enzyme Microb Technol; 2013 Feb; 52(2):123-8. PubMed ID: 23273282 [TBL] [Abstract][Full Text] [Related]
5. FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes. Okuda-Shimazaki J; Yoshida H; Sode K Bioelectrochemistry; 2020 Apr; 132():107414. PubMed ID: 31838457 [TBL] [Abstract][Full Text] [Related]
6. Strategic design and improvement of the internal electron transfer of heme b domain-fused glucose dehydrogenase for use in direct electron transfer-type glucose sensors. Ito K; Okuda-Shimazaki J; Kojima K; Mori K; Tsugawa W; Asano R; Ikebukuro K; Sode K Biosens Bioelectron; 2021 Mar; 176():112911. PubMed ID: 33421758 [TBL] [Abstract][Full Text] [Related]
7. Structural analysis of fungus-derived FAD glucose dehydrogenase. Yoshida H; Sakai G; Mori K; Kojima K; Kamitori S; Sode K Sci Rep; 2015 Aug; 5():13498. PubMed ID: 26311535 [TBL] [Abstract][Full Text] [Related]
8. Creation of a novel DET type FAD glucose dehydrogenase harboring Escherichia coli derived cytochrome b Yanase T; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Sode K Biochem Biophys Res Commun; 2020 Sep; 530(1):82-86. PubMed ID: 32828319 [TBL] [Abstract][Full Text] [Related]
9. An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes. Shiota M; Yamazaki T; Yoshimatsu K; Kojima K; Tsugawa W; Ferri S; Sode K Bioelectrochemistry; 2016 Dec; 112():178-83. PubMed ID: 26951961 [TBL] [Abstract][Full Text] [Related]
10. Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips. Sode K; Loew N; Ohnishi Y; Tsuruta H; Mori K; Kojima K; Tsugawa W; LaBelle JT; Klonoff DC Biosens Bioelectron; 2017 Jan; 87():305-311. PubMed ID: 27573296 [TBL] [Abstract][Full Text] [Related]
11. The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers. Lee I; Loew N; Tsugawa W; Lin CE; Probst D; La Belle JT; Sode K Bioelectrochemistry; 2018 Jun; 121():1-6. PubMed ID: 29291433 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase. Ishida K; Orihara K; Muguruma H; Iwasa H; Hiratsuka A; Tsuji K; Kishimoto T Anal Sci; 2018; 34(7):783-787. PubMed ID: 29998959 [TBL] [Abstract][Full Text] [Related]
13. Mutagenesis Study of the Cytochrome c Subunit Responsible for the Direct Electron Transfer-Type Catalytic Activity of FAD-Dependent Glucose Dehydrogenase. Yamashita Y; Suzuki N; Hirose N; Kojima K; Tsugawa W; Sode K Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561779 [TBL] [Abstract][Full Text] [Related]
14. Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia. Yamaoka H; Yamashita Y; Ferri S; Sode K Biotechnol Lett; 2008 Nov; 30(11):1967-72. PubMed ID: 18581061 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement. Milton RD; Giroud F; Thumser AE; Minteer SD; Slade RC Phys Chem Chem Phys; 2013 Nov; 15(44):19371-9. PubMed ID: 24121716 [TBL] [Abstract][Full Text] [Related]
16. Orientated Immobilization of FAD-Dependent Glucose Dehydrogenase on Electrode by Carbohydrate-Binding Module Fusion for Efficient Glucose Assay. Han Q; Gong W; Zhang Z; Wang L; Wang B; Cai L; Meng Q; Li Y; Liu Q; Yang Y; Zheng L; Ma Y Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073858 [TBL] [Abstract][Full Text] [Related]
17. Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum. Milton RD; Lim K; Hickey DP; Minteer SD Bioelectrochemistry; 2015 Dec; 106(Pt A):56-63. PubMed ID: 25890695 [TBL] [Abstract][Full Text] [Related]
18. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors. Tsuruoka N; Sadakane T; Hayashi R; Tsujimura S Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28287419 [TBL] [Abstract][Full Text] [Related]
19. FAD-Dependent Glucose Dehydrogenase Immobilization and Mediation Within a Naphthoquinone Redox Polymer. Milton RD Methods Mol Biol; 2017; 1504():193-202. PubMed ID: 27770423 [TBL] [Abstract][Full Text] [Related]
20. From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase. Tsujimura S Biosci Biotechnol Biochem; 2019 Jan; 83(1):39-48. PubMed ID: 30274547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]