These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29727796)

  • 1. A catheter friction tester using balance sensor: Combined evaluation of the effects of mechanical properties of tubing materials and surface coatings.
    Røn T; Jacobsen KP; Lee S
    J Mech Behav Biomed Mater; 2018 Aug; 84():12-21. PubMed ID: 29727796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical dysfunction of ventriculoperitoneal shunts caused by calcification of the silicone rubber catheter.
    Boch AL; Hermelin E; Sainte-Rose C; Sgouros S
    J Neurosurg; 1998 Jun; 88(6):975-82. PubMed ID: 9609291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophilic-coated catheters for intermittent catheterisation reduce urethral micro trauma: a prospective, randomised, participant-blinded, crossover study of three different types of catheters.
    Stensballe J; Looms D; Nielsen PN; Tvede M
    Eur Urol; 2005 Dec; 48(6):978-83. PubMed ID: 16126331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of urethral catheter surface lubricity.
    Kazmierska K; Szwast M; Ciach T
    J Mater Sci Mater Med; 2008 Jun; 19(6):2301-6. PubMed ID: 18071872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface morphology and friction coefficient of various types of Foley catheter.
    Graiver D; Durall RL; Okada T
    Biomaterials; 1993 May; 14(6):465-9. PubMed ID: 8507794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between biomedical catheter surface properties and lubricity as determined using textural analysis and multiple regression analysis.
    Jones DS; Garvin CP; Gorman SP
    Biomaterials; 2004; 25(7-8):1421-8. PubMed ID: 14643617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative histopathology of epidural hydrogel and silicone elastomer catheters following 30 and 180 days implant in the ewe.
    Coombs DW; Colburn RW; DeLeo JA; Hoopes PJ; Twitchell BB
    Acta Anaesthesiol Scand; 1994 May; 38(4):388-95. PubMed ID: 8067228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of in vitro and haptic assessments in the characterisation of surface lubricity.
    Irwin NJ; McCoy CP; McCullough AR; Corbett DJ
    Proc Inst Mech Eng H; 2019 Jan; 233(1):84-90. PubMed ID: 29393009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomimetic urethral model to evaluate urinary catheter lubricity and epithelial micro-trauma.
    Humphreys O; Pickering M; O'Cearbhaill ED; Flanagan TC
    J Mech Behav Biomed Mater; 2020 Aug; 108():103792. PubMed ID: 32469717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of slipperiness of catheter surfaces.
    Marmieri G; Pettenati M; Cassinelli C; Morra M
    J Biomed Mater Res; 1996; 33(1):29-33. PubMed ID: 8734071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative evaluation of coefficient of friction and mechanical properties of commercially available Foley catheters.
    Ramesh P; Joseph R; Sunny MC
    J Biomater Appl; 2001 Apr; 15(4):344-50. PubMed ID: 11336387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbore catheters: keys to successful design and manufacture, Part I.
    Kramer HW
    Med Device Technol; 2001 Oct; 12(8):14-6. PubMed ID: 12938543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing an Integrated Amphiphilic Surfactant to Traditional Hydrophilic Coatings for the Reduction of Catheter-Associated Urethral Microtrauma.
    Burns J; Pollard D; Ali A; McCoy CP; Carson L; Wylie MP
    ACS Omega; 2024 May; 9(20):22410-22422. PubMed ID: 38799332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the surface friction of silicone elastomer parts.
    Klaassen EL
    Med Device Technol; 2007; 18(1):26, 28-9. PubMed ID: 17402638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-friction hydrophilic surface for medical devices.
    Nagaoka S; Akashi R
    Biomaterials; 1990 Aug; 11(6):419-24. PubMed ID: 2207232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compliant layer acetabular cups: friction testing of a range of materials and designs for a new generation of prosthesis that mimics the natural joint.
    Scholes SC; Burgess IC; Marsden HR; Unsworth A; Jones E; Smith N
    Proc Inst Mech Eng H; 2006 Jul; 220(5):583-96. PubMed ID: 16898216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of phospholipidic boundary lubrication in rigid and compliant hemiarthroplasty models.
    Foy JR; Williams PF; Powell GL; Ishihara K; Nakabayashi N; LaBerge M
    Proc Inst Mech Eng H; 1999; 213(1):5-18. PubMed ID: 10087900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro investigation of friction at the interface between bone and a surgical instrument.
    Parekh J; Shepherd DE; Hukins DW; Hingley C; Maffulli N
    Proc Inst Mech Eng H; 2013 Jun; 227(6):712-8. PubMed ID: 23636757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a simulated urethra model for the quantitative assessment of urinary catheter lubricity.
    Jones DS; Garvin CP; Gorman SP
    J Mater Sci Mater Med; 2001 Jan; 12(1):15-21. PubMed ID: 15348372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Evaluation of Lubrication Coatings for Intravascular Catheters, Wires, and Delivery System].
    Xu Y; Cheng M
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Mar; 46(2):191-194. PubMed ID: 35411749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.