BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29727952)

  • 1. Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production.
    Nabavi-Pelesaraei A; Rafiee S; Mohtasebi SS; Hosseinzadeh-Bandbafha H; Chau KW
    Sci Total Environ; 2018 Aug; 631-632():1279-1294. PubMed ID: 29727952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production.
    Kaab A; Sharifi M; Mobli H; Nabavi-Pelesaraei A; Chau KW
    Sci Total Environ; 2019 May; 664():1005-1019. PubMed ID: 30769303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle assessment of rice production systems in different paddy field size levels in north of Iran.
    Habibi E; Niknejad Y; Fallah H; Dastan S; Tari DB
    Environ Monit Assess; 2019 Mar; 191(4):202. PubMed ID: 30826990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks.
    Khanali M; Mobli H; Hosseinzadeh-Bandbafha H
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26324-26340. PubMed ID: 28965294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling.
    Khoshnevisan B; Rajaeifar MA; Clark S; Shamahirband S; Anuar NB; Mohd Shuib NL; Gani A
    Sci Total Environ; 2014 May; 481():242-51. PubMed ID: 24602908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence modeling to predict transmembrane pressure in anaerobic membrane bioreactor-sequencing batch reactor during biohydrogen production.
    Taheri E; Amin MM; Fatehizadeh A; Rezakazemi M; Aminabhavi TM
    J Environ Manage; 2021 Aug; 292():112759. PubMed ID: 33984638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models.
    Seifi A; Riahi-Madvar H
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):867-885. PubMed ID: 30415370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rice single cropping or ratooning agro-system: which one is more environment-friendly?
    Firouzi S; Nikkhah A; Aminpanah H
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32246-32256. PubMed ID: 30225691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiyear life energy and life cycle assessment of orange production in Iran.
    Alishah A; Motevali A; Tabatabaeekoloor R; Hashemi SJ
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):32432-32445. PubMed ID: 31612415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.
    Liu C; Huang Y; Wang X; Tai Y; Liu L; Liu H
    Integr Environ Assess Manag; 2018 Jan; 14(1):139-149. PubMed ID: 28796442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multidimensional analysis of environmental impacts from potato agricultural production in the Peruvian Central Andes.
    Grados D; Schrevens E
    Sci Total Environ; 2019 May; 663():927-934. PubMed ID: 30739860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental impacts of innovative dairy farming systems aiming at improved internal nutrient cycling: A multi-scale assessment.
    de Vries W; Kros J; Dolman MA; Vellinga TV; de Boer HC; Gerritsen AL; Sonneveld MPW; Bouma J
    Sci Total Environ; 2015 Dec; 536():432-442. PubMed ID: 26231773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of analytic hierarchy process to develop a weighting scheme for life cycle assessment of agricultural production.
    Nikkhah A; Firouzi S; El Haj Assad M; Ghnimi S
    Sci Total Environ; 2019 May; 665():538-545. PubMed ID: 30776625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle assessment of first-generation biofuels using a nitrogen crop model.
    Gallejones P; Pardo G; Aizpurua A; del Prado A
    Sci Total Environ; 2015 Feb; 505():1191-201. PubMed ID: 25461117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP.
    Jalal FE; Xu Y; Iqbal M; Javed MF; Jamhiri B
    J Environ Manage; 2021 Jul; 289():112420. PubMed ID: 33831756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solar irradiation prediction using empirical and artificial intelligence methods: A comparative review.
    Nawab F; Abd Hamid AS; Ibrahim A; Sopian K; Fazlizan A; Fauzan MF
    Heliyon; 2023 Jun; 9(6):e17038. PubMed ID: 37484325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of environmental indicators in land leveling using artificial intelligence techniques.
    Alzoubi I; Delavar MR; Mirzaei F; Arrabi BN
    J Environ Health Sci Eng; 2018 Jun; 16(1):65-80. PubMed ID: 30258643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projecting life-cycle environmental impacts of corn production in the U.S. Midwest under future climate scenarios using a machine learning approach.
    Lee EK; Zhang WJ; Zhang X; Adler PR; Lin S; Feingold BJ; Khwaja HA; Romeiko XX
    Sci Total Environ; 2020 Apr; 714():136697. PubMed ID: 31982745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power optimization of a photovoltaic system with artificial intelligence algorithms over two seasons in tropical area.
    Ba A; Ndiaye A; Ndiaye EHM; Mbodji S
    MethodsX; 2023; 10():101959. PubMed ID: 36545542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different heuristic and decomposition techniques for river stage modeling.
    Seo Y; Kim S; Singh VP
    Environ Monit Assess; 2018 Jun; 190(7):392. PubMed ID: 29892912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.