These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 29727954)
21. Fuel moisture content enhances nonadditive effects of plant mixtures on flammability and fire behavior. Blauw LG; Wensink N; Bakker L; van Logtestijn RS; Aerts R; Soudzilovskaia NA; Cornelissen JH Ecol Evol; 2015 Sep; 5(17):3830-41. PubMed ID: 26380709 [TBL] [Abstract][Full Text] [Related]
22. Dimensional Analysis on Forest Fuel Bed Fire Spread. Yang JC Can J For Res; 2018 Jan; 48(1):105-110. PubMed ID: 29720772 [TBL] [Abstract][Full Text] [Related]
23. Dynamic changes in moisture content and applicability analysis of a typical litter prediction model in Yunnan Province. Zhang Y; Tian L PeerJ; 2021; 9():e12206. PubMed ID: 34703666 [TBL] [Abstract][Full Text] [Related]
24. Critical fire weather conditions during active fire spread days in Canada. Wang X; Oliver J; Swystun T; Hanes CC; Erni S; Flannigan MD Sci Total Environ; 2023 Apr; 869():161831. PubMed ID: 36708831 [TBL] [Abstract][Full Text] [Related]
25. [Change trends of summer fire danger in great Xing' an Mountains forest region of Heilongjiang Province, Northeast China under climate change]. Yang G; Shu LF; Di XY Ying Yong Sheng Tai Xue Bao; 2012 Nov; 23(11):3157-63. PubMed ID: 23431804 [TBL] [Abstract][Full Text] [Related]
26. [Fire behavior of Mongolian oak leaves fuel bed under no-wind and zero-slope conditions. II. Analysis of the factors affecting flame length and residence time and related prediction models]. Zhang JL; Liu BF; Di XY; Chu TF; Jin S Ying Yong Sheng Tai Xue Bao; 2012 Nov; 23(11):3149-56. PubMed ID: 23431803 [TBL] [Abstract][Full Text] [Related]
27. Optimizing prescribed fire allocation for managing fire risk in central Catalonia. Alcasena FJ; Ager AA; Salis M; Day MA; Vega-Garcia C Sci Total Environ; 2018 Apr; 621():872-885. PubMed ID: 29216595 [TBL] [Abstract][Full Text] [Related]
28. [Fire behavior of ground surface fuels in Pinus koraiensis and Quercus mongolica mixed forest under no wind and zero slope condition: a prediction with extended Rothermel model]. Zhang JL; Liu BF; Chu TF; Di XY; Jin S Ying Yong Sheng Tai Xue Bao; 2012 Jun; 23(6):1495-502. PubMed ID: 22937636 [TBL] [Abstract][Full Text] [Related]
29. Examining the relative effects of fire weather, suppression and fuel treatment on fire behaviour--a simulation study. Penman TD; Collins L; Price OF; Bradstock RA; Metcalf S; Chong DM J Environ Manage; 2013 Dec; 131():325-33. PubMed ID: 24211380 [TBL] [Abstract][Full Text] [Related]
30. Wildfire frequency varies with the size and shape of fuel types in southeastern France: implications for environmental management. Curt T; Borgniet L; Bouillon C J Environ Manage; 2013 Mar; 117():150-61. PubMed ID: 23369835 [TBL] [Abstract][Full Text] [Related]
31. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data. González-Ferreiro E; Arellano-Pérez S; Castedo-Dorado F; Hevia A; Vega JA; Vega-Nieva D; Álvarez-González JG; Ruiz-González AD PLoS One; 2017; 12(4):e0176114. PubMed ID: 28448524 [TBL] [Abstract][Full Text] [Related]
32. Online moisture measurement of dead fine fuel on the forest floor using near-infrared reflectometry. Peng B; Zhang J; Xing J; Liu J Rev Sci Instrum; 2021 Jun; 92(6):065103. PubMed ID: 34243528 [TBL] [Abstract][Full Text] [Related]
33. Resolving future fire management conflicts using multicriteria decision making. Driscoll DA; Bode M; Bradstock RA; Keith DA; Penman TD; Price OF Conserv Biol; 2016 Feb; 30(1):196-205. PubMed ID: 26148692 [TBL] [Abstract][Full Text] [Related]
34. How wildfire risk is related to urban planning and Fire Weather Index in SE France (1990-2013). Fox DM; Carrega P; Ren Y; Caillouet P; Bouillon C; Robert S Sci Total Environ; 2018 Apr; 621():120-129. PubMed ID: 29179067 [TBL] [Abstract][Full Text] [Related]
35. Influence of fuels, weather and the built environment on the exposure of property to wildfire. Penman TD; Collins L; Syphard AD; Keeley JE; Bradstock RA PLoS One; 2014; 9(10):e111414. PubMed ID: 25360741 [TBL] [Abstract][Full Text] [Related]
36. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA. Dickinson MB; Hutchinson TF; Dietenberger M; Matt F; Peters MP PLoS One; 2016; 11(8):e0159997. PubMed ID: 27536964 [TBL] [Abstract][Full Text] [Related]
37. Forest fire management to avoid unintended consequences: a case study of Portugal using system dynamics. Collins RD; de Neufville R; Claro J; Oliveira T; Pacheco AP J Environ Manage; 2013 Nov; 130():1-9. PubMed ID: 24036501 [TBL] [Abstract][Full Text] [Related]
38. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Hong H; Tsangaratos P; Ilia I; Liu J; Zhu AX; Xu C Sci Total Environ; 2018 Jul; 630():1044-1056. PubMed ID: 29554726 [TBL] [Abstract][Full Text] [Related]
39. The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. Price OF; Bradstock RA J Environ Manage; 2012 Dec; 113():146-57. PubMed ID: 23025983 [TBL] [Abstract][Full Text] [Related]
40. Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery. Saglam B; Bilgili E; Dincdurmaz B; Kadiogulari AI; Kücük Ö Sensors (Basel); 2008 Jun; 8(6):3970-3987. PubMed ID: 27879918 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]