BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 29728047)

  • 1. Label-Free Specific Detection and Collection of C-Reactive Protein Using Zwitterionic Phosphorylcholine-Polymer-Protected Magnetic Nanoparticles.
    Iwasaki S; Kawasaki H; Iwasaki Y
    Langmuir; 2019 Feb; 35(5):1749-1755. PubMed ID: 29728047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of 2-methacryloyloxyethyl phosphorylcholine polymeric nanoparticle for immunoassay of C-reactive protein detection.
    Park J; Kurosawa S; Watanabe J; Ishihara K
    Anal Chem; 2004 May; 76(9):2649-55. PubMed ID: 15117211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance.
    Inoue Y; Onodera Y; Ishihara K
    Colloids Surf B Biointerfaces; 2016 May; 141():507-512. PubMed ID: 26896657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disposable paper-based electrochemical sensor using thiol-terminated poly(2-methacryloyloxyethyl phosphorylcholine) for the label-free detection of C-reactive protein.
    Pinyorospathum C; Chaiyo S; Sae-Ung P; Hoven VP; Damsongsang P; Siangproh W; Chailapakul O
    Mikrochim Acta; 2019 Jun; 186(7):472. PubMed ID: 31243577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized surface plasmon resonance nanosensing of C-reactive protein with poly(2-methacryloyloxyethyl phosphorylcholine)-grafted gold nanoparticles prepared by surface-initiated atom transfer radical polymerization.
    Kitayama Y; Takeuchi T
    Anal Chem; 2014 Jun; 86(11):5587-94. PubMed ID: 24830565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of biomimetic poly[2-(methacryloyloxy)ethyl phosphorycholine]-coated magnetite nanoparticles via surface-initiated atom transfer radical polymerization.
    Sui JH; Cao CY; Cai W
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8469-73. PubMed ID: 22400210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine).
    Ishihara K; Mu M; Konno T; Inoue Y; Fukazawa K
    J Biomater Sci Polym Ed; 2017; 28(10-12):884-899. PubMed ID: 28276997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-efficiency preparation of poly(2-methacryloyloxyethyl phosphorylcholine) grafting layer on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization in an aqueous solution in the presence of inorganic salt additives.
    Shiojima T; Inoue Y; Kyomoto M; Ishihara K
    Acta Biomater; 2016 Aug; 40():38-45. PubMed ID: 27154499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grafting of poly(2-methacryloyloxyethyl phosphorylcholine) on polyethylene liner in artificial hip joints reduces production of wear particles.
    Moro T; Kyomoto M; Ishihara K; Saiga K; Hashimoto M; Tanaka S; Ito H; Tanaka T; Oshima H; Kawaguchi H; Takatori Y
    J Mech Behav Biomed Mater; 2014 Mar; 31():100-6. PubMed ID: 23651567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of nanoparticles composed with bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer.
    Konno T; Kurita K; Iwasaki Y; Nakabayashi N; Ishihara K
    Biomaterials; 2001 Jul; 22(13):1883-9. PubMed ID: 11396894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes.
    Liu Y; Inoue Y; Sakata S; Kakinoki S; Yamaoka T; Ishihara K
    J Biomater Sci Polym Ed; 2014; 25(5):474-86. PubMed ID: 24417469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatible magnetite nanoparticles synthesized by one-pot reaction with a cell membrane mimetic copolymer.
    Zheng C; Wei P; Dai W; Wang L; Song B; Jia P; Gong Y
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():863-871. PubMed ID: 28415540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of grafted phosphorylcholine polymer layers as specific recognition ligands for C-reactive protein focused on grafting density and thickness to achieve highly sensitive detection.
    Kamon Y; Kitayama Y; Itakura AN; Fukazawa K; Ishihara K; Takeuchi T
    Phys Chem Chem Phys; 2015 Apr; 17(15):9951-8. PubMed ID: 25783194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Well-defined protein immobilization on photo-responsive phosphorylcholine polymer surfaces.
    Tanaka M; Kawai S; Iwasaki Y
    J Biomater Sci Polym Ed; 2017 Dec; 28(17):2021-2033. PubMed ID: 28803516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets.
    Feng W; Gao X; McClung G; Zhu S; Ishihara K; Brash JL
    Acta Biomater; 2011 Oct; 7(10):3692-9. PubMed ID: 21693202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic Lubrication and Surface Interactions of Dopamine-Assisted Zwitterionic Polyelectrolyte Coatings.
    Han L; Xiang L; Zhang J; Chen J; Liu J; Yan B; Zeng H
    Langmuir; 2018 Sep; 34(38):11593-11601. PubMed ID: 30156852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A plasmonic chip-based bio/chemical hybrid sensing system for the highly sensitive detection of C-reactive protein.
    Matsuura R; Tawa K; Kitayama Y; Takeuchi T
    Chem Commun (Camb); 2016 Mar; 52(20):3883-6. PubMed ID: 26660887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free dynamic light scattering assay for C-reactive protein detection using magnetic nanoparticles.
    António M; Lima T; Vitorino R; Daniel-da-Silva AL
    Anal Chim Acta; 2022 Aug; 1222():340169. PubMed ID: 35934422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization.
    Goda T; Konno T; Takai M; Moro T; Ishihara K
    Biomaterials; 2006 Oct; 27(30):5151-60. PubMed ID: 16797692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Durable modification of segmented polyurethane for elastic blood-contacting devices by graft-type 2-methacryloyloxyethyl phosphorylcholine copolymer.
    Liu Y; Inoue Y; Mahara A; Kakinoki S; Yamaoka T; Ishihara K
    J Biomater Sci Polym Ed; 2014; 25(14-15):1514-29. PubMed ID: 24894706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.