These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Individualized growth prediction of mice skin tumors with maximum likelihood estimators. Patmanidis S; Charalampidis AC; Kordonis I; Strati K; Mitsis GD; Papavassilopoulos GP Comput Methods Programs Biomed; 2020 Mar; 185():105165. PubMed ID: 31710982 [TBL] [Abstract][Full Text] [Related]
3. Modeling of nonlinear biological phenomena modeled by S-systems. Mansouri MM; Nounou HN; Nounou MN; Datta AA Math Biosci; 2014 Mar; 249():75-91. PubMed ID: 24524881 [TBL] [Abstract][Full Text] [Related]
4. Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements. Leander J; Lundh T; Jirstrand M Math Biosci; 2014 May; 251():54-62. PubMed ID: 24631177 [TBL] [Abstract][Full Text] [Related]
5. Fast estimation of diffusion tensors under Rician noise by the EM algorithm. Liu J; Gasbarra D; Railavo J J Neurosci Methods; 2016 Jan; 257():147-58. PubMed ID: 26456357 [TBL] [Abstract][Full Text] [Related]
6. Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm. Overgaard RV; Jonsson N; Tornøe CW; Madsen H J Pharmacokinet Pharmacodyn; 2005 Feb; 32(1):85-107. PubMed ID: 16175312 [TBL] [Abstract][Full Text] [Related]
7. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis. Tashkova K; Korošec P; Silc J; Todorovski L; Džeroski S BMC Syst Biol; 2011 Oct; 5():159. PubMed ID: 21989196 [TBL] [Abstract][Full Text] [Related]
8. Convergence study in extended Kalman filter-based training of recurrent neural networks. Wang X; Huang Y IEEE Trans Neural Netw; 2011 Apr; 22(4):588-600. PubMed ID: 21402512 [TBL] [Abstract][Full Text] [Related]
9. Maximum-likelihood versus maximum a posteriori parameter estimation of physiological system models: the C-peptide impulse response case study. Sparacino G; Tombolato C; Cobelli C IEEE Trans Biomed Eng; 2000 Jun; 47(6):801-11. PubMed ID: 10833855 [TBL] [Abstract][Full Text] [Related]
10. Performance of Maximum Likelihood estimation of Mueller matrices taking into account physical realizability and Gaussian or Poisson noise statistics. Hu H; Ossikovski R; Goudail F Opt Express; 2013 Feb; 21(4):5117-29. PubMed ID: 23482046 [TBL] [Abstract][Full Text] [Related]
11. Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data. Caiazzo A; Caforio F; Montecinos G; Muller LO; Blanco PJ; Toro EF Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2843. PubMed ID: 27781397 [TBL] [Abstract][Full Text] [Related]
12. Estimation of noise parameters in dynamical system identification with Kalman filters. Kwasniok F Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036214. PubMed ID: 23031004 [TBL] [Abstract][Full Text] [Related]
15. Design of robust Gaussian approximate filter and smoother with latency probability identification. Jiang Z; Zhou W; Shan C; Zhang Z ISA Trans; 2023 Jun; 137():405-418. PubMed ID: 36759294 [TBL] [Abstract][Full Text] [Related]
16. Measures of performance in nonlinear estimation tasks: prediction of estimation performance at low signal-to-noise ratio. Müller SP; Abbey CK; Rybicki FJ; Moore SC; Kijewski MF Phys Med Biol; 2005 Aug; 50(16):3697-715. PubMed ID: 16077222 [TBL] [Abstract][Full Text] [Related]
17. Kalman filter parameter estimation for a nonlinear diffusion model of epithelial cell migration using stochastic collocation and the Karhunen-Loeve expansion. Barber J; Tanase R; Yotov I Math Biosci; 2016 Jun; 276():133-44. PubMed ID: 27085426 [TBL] [Abstract][Full Text] [Related]
18. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies. Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284 [TBL] [Abstract][Full Text] [Related]
19. An inverse problem formulation for parameter estimation of a reaction-diffusion model of low grade gliomas. Gholami A; Mang A; Biros G J Math Biol; 2016 Jan; 72(1-2):409-33. PubMed ID: 25963601 [TBL] [Abstract][Full Text] [Related]
20. Parameter estimation and model selection in computational biology. Lillacci G; Khammash M PLoS Comput Biol; 2010 Mar; 6(3):e1000696. PubMed ID: 20221262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]