These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 29728243)
1. Development of a robust and cost-effective 3D respiratory motion monitoring system using the kinect device: Accuracy comparison with the conventional stereovision navigation system. Bae M; Lee S; Kim N Comput Methods Programs Biomed; 2018 Jul; 160():25-32. PubMed ID: 29728243 [TBL] [Abstract][Full Text] [Related]
2. Accuracy of a novel marker tracking approach based on the low-cost Microsoft Kinect v2 sensor. Timmi A; Coates G; Fortin K; Ackland D; Bryant AL; Gordon I; Pivonka P Med Eng Phys; 2018 Sep; 59():63-69. PubMed ID: 29983277 [TBL] [Abstract][Full Text] [Related]
3. The validity of the first and second generation Microsoft Kinect™ for identifying joint center locations during static postures. Xu X; McGorry RW Appl Ergon; 2015 Jul; 49():47-54. PubMed ID: 25766422 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of respiratory motion tracking using Microsoft Kinect v2 sensor. Silverstein E; Snyder M J Appl Clin Med Phys; 2018 May; 19(3):193-204. PubMed ID: 29577603 [TBL] [Abstract][Full Text] [Related]
5. Accuracy and Reliability of the Kinect Version 2 for Clinical Measurement of Motor Function. Otte K; Kayser B; Mansow-Model S; Verrel J; Paul F; Brandt AU; Schmitz-Hübsch T PLoS One; 2016; 11(11):e0166532. PubMed ID: 27861541 [TBL] [Abstract][Full Text] [Related]
6. SU-E-J-158: A Prototype of a Real-Time Respiratory Motion Monitoring System Using Microsoft Kinect Sensor. Xia J; Siochi R Med Phys; 2012 Jun; 39(6Part8):3689. PubMed ID: 28518898 [TBL] [Abstract][Full Text] [Related]
7. A real-time respiratory motion monitoring system using KINECT: proof of concept. Xia J; Siochi RA Med Phys; 2012 May; 39(5):2682-5. PubMed ID: 22559638 [TBL] [Abstract][Full Text] [Related]
8. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET. Heß M; Büther F; Gigengack F; Dawood M; Schäfers KP Med Phys; 2015 May; 42(5):2276-86. PubMed ID: 25979022 [TBL] [Abstract][Full Text] [Related]
9. Kinect v2 tracked Body Joint Smoothing for Kinematic Analysis in Musculoskeletal Disorders. Mangal NK; Tiwari AK Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5769-5772. PubMed ID: 33019285 [TBL] [Abstract][Full Text] [Related]
10. Determination of repeatability of kinect sensor. Bonnechère B; Sholukha V; Jansen B; Omelina L; Rooze M; Van Sint Jan S Telemed J E Health; 2014 May; 20(5):451-3. PubMed ID: 24617290 [TBL] [Abstract][Full Text] [Related]
11. Validation of a Kinect V2 based rehabilitation game. Ma M; Proffitt R; Skubic M PLoS One; 2018; 13(8):e0202338. PubMed ID: 30142631 [TBL] [Abstract][Full Text] [Related]
12. Validity of the Microsoft Kinect for measurement of neck angle: comparison with electrogoniometry. Allahyari T; Sahraneshin Samani A; Khalkhali HR Int J Occup Saf Ergon; 2017 Dec; 23(4):524-532. PubMed ID: 27600120 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard: A Pilot Study. Albert JA; Owolabi V; Gebel A; Brahms CM; Granacher U; Arnrich B Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911651 [TBL] [Abstract][Full Text] [Related]
14. Human Arm Motion Tracking by Orientation-Based Fusion of Inertial Sensors and Kinect Using Unscented Kalman Filter. Atrsaei A; Salarieh H; Alasty A J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27428461 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the Microsoft Kinect as a clinical assessment tool of body sway. Yeung LF; Cheng KC; Fong CH; Lee WC; Tong KY Gait Posture; 2014 Sep; 40(4):532-8. PubMed ID: 25047828 [TBL] [Abstract][Full Text] [Related]
16. Development and Validation of a Portable and Inexpensive Tool to Measure the Drop Vertical Jump Using the Microsoft Kinect V2. Gray AD; Willis BW; Skubic M; Huo Z; Razu S; Sherman SL; Guess TM; Jahandar A; Gulbrandsen TR; Miller S; Siesener NJ Sports Health; 2017; 9(6):537-544. PubMed ID: 28846505 [TBL] [Abstract][Full Text] [Related]
17. Digital data acquisition of shoulder range of motion and arm motion smoothness using Kinect v2. Zulkarnain RF; Kim GY; Adikrishna A; Hong HP; Kim YJ; Jeon IH J Shoulder Elbow Surg; 2017 May; 26(5):895-901. PubMed ID: 28131678 [TBL] [Abstract][Full Text] [Related]
18. Management of the baseline shift using a new and simple method for respiratory-gated radiation therapy: detectability and effectiveness of a flexible monitoring system. Tachibana H; Kitamura N; Ito Y; Kawai D; Nakajima M; Tsuda A; Shiizuka H Med Phys; 2011 Jul; 38(7):3971-80. PubMed ID: 21858994 [TBL] [Abstract][Full Text] [Related]
19. A Novel Method of Human Joint Prediction in an Occlusion Scene by Using Low-cost Motion Capture Technique. Niu J; Wang X; Wang D; Ran L Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085653 [TBL] [Abstract][Full Text] [Related]
20. Estimating breathing movements of the chest and abdominal wall using a simple, newly developed breathing movement-measuring device. Kaneko H Respir Care; 2014 Jul; 59(7):1133-9. PubMed ID: 24222705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]