BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 29728454)

  • 41. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis.
    Xie Y; Liu Y; Wang H; Ma X; Wang B; Wu G; Wang H
    Nat Commun; 2017 Aug; 8(1):348. PubMed ID: 28839125
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamics of the shade-avoidance response in Arabidopsis.
    Ciolfi A; Sessa G; Sassi M; Possenti M; Salvucci S; Carabelli M; Morelli G; Ruberti I
    Plant Physiol; 2013 Sep; 163(1):331-53. PubMed ID: 23893169
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Long noncoding RNA-mediated epigenetic regulation of auxin-related genes controls shade avoidance syndrome in Arabidopsis.
    Mammarella MF; Lucero L; Hussain N; Muñoz-Lopez A; Huang Y; Ferrero L; Fernandez-Milmanda GL; Manavella P; Benhamed M; Crespi M; Ballare CL; Gutiérrez Marcos J; Cubas P; Ariel F
    EMBO J; 2023 Dec; 42(24):e113941. PubMed ID: 38054357
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo.
    Treml BS; Winderl S; Radykewicz R; Herz M; Schweizer G; Hutzler P; Glawischnig E; Ruiz RA
    Development; 2005 Sep; 132(18):4063-74. PubMed ID: 16107478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CONSTANS-LIKE 7 (COL7) is involved in phytochrome B (phyB)-mediated light-quality regulation of auxin homeostasis.
    Zhang Z; Ji R; Li H; Zhao T; Liu J; Lin C; Liu B
    Mol Plant; 2014 Sep; 7(9):1429-1440. PubMed ID: 24908267
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity.
    Carabelli M; Possenti M; Sessa G; Ciolfi A; Sassi M; Morelli G; Ruberti I
    Genes Dev; 2007 Aug; 21(15):1863-8. PubMed ID: 17671088
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phytochrome in cotyledons regulates the expression of genes in the hypocotyl through auxin-dependent and -independent pathways.
    Tanaka S; Nakamura S; Mochizuki N; Nagatani A
    Plant Cell Physiol; 2002 Oct; 43(10):1171-81. PubMed ID: 12407197
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa.
    Procko C; Crenshaw CM; Ljung K; Noel JP; Chory J
    Plant Physiol; 2014 Jul; 165(3):1285-1301. PubMed ID: 24891610
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis.
    Hersch M; Lorrain S; de Wit M; Trevisan M; Ljung K; Bergmann S; Fankhauser C
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6515-20. PubMed ID: 24733935
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comprehensive transcriptome analysis of auxin responses in Arabidopsis.
    Paponov IA; Paponov M; Teale W; Menges M; Chakrabortee S; Murray JA; Palme K
    Mol Plant; 2008 Mar; 1(2):321-37. PubMed ID: 19825543
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ribosomal protein L27a is required for growth and patterning in Arabidopsis thaliana.
    Szakonyi D; Byrne ME
    Plant J; 2011 Jan; 65(2):269-81. PubMed ID: 21223391
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Arabidopsis SAURs are critical for differential light regulation of the development of various organs.
    Sun N; Wang J; Gao Z; Dong J; He H; Terzaghi W; Wei N; Deng XW; Chen H
    Proc Natl Acad Sci U S A; 2016 May; 113(21):6071-6. PubMed ID: 27118848
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diurnal dependence of growth responses to shade in Arabidopsis: role of hormone, clock, and light signaling.
    Sellaro R; Pacín M; Casal JJ
    Mol Plant; 2012 May; 5(3):619-28. PubMed ID: 22311777
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Complementation of the embryo-lethal T-DNA insertion mutant of AUXIN-BINDING-PROTEIN 1 (ABP1) with abp1 point mutated versions reveals crosstalk of ABP1 and phytochromes.
    Effendi Y; Ferro N; Labusch C; Geisler M; Scherer GF
    J Exp Bot; 2015 Jan; 66(1):403-18. PubMed ID: 25392478
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Shade Avoidance and Neighbor Detection.
    Roig-Villanova I; Paulišić S; Martinez-Garcia JF
    Methods Mol Biol; 2019; 2026():157-168. PubMed ID: 31317411
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis.
    Cheng Y; Dai X; Zhao Y
    Genes Dev; 2006 Jul; 20(13):1790-9. PubMed ID: 16818609
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A role for AUXIN RESISTANT3 in the coordination of leaf growth.
    Pérez-Pérez JM; Candela H; Robles P; López-Torrejón G; del Pozo JC; Micol JL
    Plant Cell Physiol; 2010 Oct; 51(10):1661-73. PubMed ID: 20739302
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development.
    Turchi L; Baima S; Morelli G; Ruberti I
    J Exp Bot; 2015 Aug; 66(16):5043-53. PubMed ID: 25911742
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Mobile Auxin Signal Connects Temperature Sensing in Cotyledons with Growth Responses in Hypocotyls.
    Bellstaedt J; Trenner J; Lippmann R; Poeschl Y; Zhang X; Friml J; Quint M; Delker C
    Plant Physiol; 2019 Jun; 180(2):757-766. PubMed ID: 31000634
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition.
    Tian CE; Muto H; Higuchi K; Matamura T; Tatematsu K; Koshiba T; Yamamoto KT
    Plant J; 2004 Nov; 40(3):333-43. PubMed ID: 15469491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.