These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 29728454)

  • 61. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana.
    Li S; Zachgo S
    Plant J; 2013 Dec; 76(6):901-13. PubMed ID: 24118612
    [TBL] [Abstract][Full Text] [Related]  

  • 62. WOX2 and STIMPY-LIKE/WOX8 promote cotyledon boundary formation in Arabidopsis.
    Lie C; Kelsom C; Wu X
    Plant J; 2012 Nov; 72(4):674-82. PubMed ID: 22827849
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The phototropic response is locally regulated within the topmost light-responsive region of the Arabidopsis thaliana seedling.
    Yamamoto K; Suzuki T; Aihara Y; Haga K; Sakai T; Nagatani A
    Plant Cell Physiol; 2014 Mar; 55(3):497-506. PubMed ID: 24334375
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Insight into the mechanism of end-of-day far-red light (EODFR)-induced shade avoidance responses in Arabidopsis thaliana.
    Mizuno T; Oka H; Yoshimura F; Ishida K; Yamashino T
    Biosci Biotechnol Biochem; 2015; 79(12):1987-94. PubMed ID: 26193333
    [TBL] [Abstract][Full Text] [Related]  

  • 65.
    Müller-Moulé P; Nozue K; Pytlak ML; Palmer CM; Covington MF; Wallace AD; Harmer SL; Maloof JN
    PeerJ; 2016; 4():e2574. PubMed ID: 27761349
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Local light signaling at the leaf tip drives remote differential petiole growth through auxin-gibberellin dynamics.
    Küpers JJ; Snoek BL; Oskam L; Pantazopoulou CK; Matton SEA; Reinen E; Liao CY; Eggermont EDC; Weekamp H; Biddanda-Devaiah M; Kohlen W; Weijers D; Pierik R
    Curr Biol; 2023 Jan; 33(1):75-85.e5. PubMed ID: 36538931
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Phytochrome-interacting factors play shared and distinct roles in regulating shade avoidance responses in Populus trees.
    Sun F; Cheng H; Song Z; Yan H; Liu H; Xiao X; Zhang Z; Luo M; Wu F; Lu J; Luo K; Wei H
    Plant Cell Environ; 2024 Jun; 47(6):2058-2073. PubMed ID: 38404129
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis.
    Kircher S; Schopfer P
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11217-21. PubMed ID: 22733756
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels.
    de Wit M; Ljung K; Fankhauser C
    New Phytol; 2015 Oct; 208(1):198-209. PubMed ID: 25963518
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Overexpression of the
    Wen S; Li J; Hao Z; Wei L; Ma J; Zong Y; Li H
    PeerJ; 2022; 10():e12615. PubMed ID: 35178288
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The Dehydratase ADT3 Affects ROS Homeostasis and Cotyledon Development.
    Para A; Muhammad D; Orozco-Nunnelly DA; Memishi R; Alvarez S; Naldrett MJ; Warpeha KM
    Plant Physiol; 2016 Oct; 172(2):1045-1060. PubMed ID: 27540109
    [TBL] [Abstract][Full Text] [Related]  

  • 72. RNA-seq analysis of laser microdissected Arabidopsis thaliana leaf epidermis, mesophyll and vasculature defines tissue-specific transcriptional responses to multiple stress treatments.
    Berkowitz O; Xu Y; Liew LC; Wang Y; Zhu Y; Hurgobin B; Lewsey MG; Whelan J
    Plant J; 2021 Aug; 107(3):938-955. PubMed ID: 33974297
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Photoreceptors Regulate Plant Developmental Plasticity through Auxin.
    Küpers JJ; Oskam L; Pierik R
    Plants (Basel); 2020 Jul; 9(8):. PubMed ID: 32722230
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A genomic analysis of the shade avoidance response in Arabidopsis.
    Devlin PF; Yanovsky MJ; Kay SA
    Plant Physiol; 2003 Dec; 133(4):1617-29. PubMed ID: 14645734
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Out of the shade and into the light.
    Grebe M
    Nat Cell Biol; 2011 Apr; 13(4):347-9. PubMed ID: 21460806
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis.
    Sessa G; Carabelli M; Sassi M; Ciolfi A; Possenti M; Mittempergher F; Becker J; Morelli G; Ruberti I
    Genes Dev; 2005 Dec; 19(23):2811-5. PubMed ID: 16322556
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Light and shade in the photocontrol of Arabidopsis growth.
    Morelli G; Ruberti I
    Trends Plant Sci; 2002 Sep; 7(9):399-404. PubMed ID: 12234731
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparative phenotypic and transcriptomic analyses unravel conserved and distinct mechanisms underlying shade avoidance syndrome in Brassicaceae vegetables.
    Nguyen NH; Sng BJR; Yeo HC; Jang IC
    BMC Genomics; 2021 Oct; 22(1):760. PubMed ID: 34696740
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Integration of Light and Auxin Signaling in Shade Plants: From Mechanisms to Opportunities in Urban Agriculture.
    Xie X; Cheng H; Hou C; Ren M
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408782
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A genetic framework for proximal secondary vein branching in the Arabidopsis thaliana embryo.
    Kastanaki E; Blanco-Touriñán N; Sarazin A; Sturchler A; Gujas B; Vera-Sirera F; Agustí J; Rodriguez-Villalon A
    Development; 2022 Jun; 149(12):. PubMed ID: 35723181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.