BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29728638)

  • 1. Understanding the ontogeny and succession of Bacillus velezensis and B. subtilis subsp. subtilis by focusing on kimchi fermentation.
    Cho MS; Jin YJ; Kang BK; Park YK; Kim C; Park DS
    Sci Rep; 2018 May; 8(1):7045. PubMed ID: 29728638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial Community of Galchi-Baechu Kimchi Based on Culture-Dependent and - Independent Investigation and Selection of Starter Candidates.
    Kim T; Heo S; Na HE; Lee G; Kim JH; Kwak MS; Sung MH; Jeong DW
    J Microbiol Biotechnol; 2022 Mar; 32(3):341-347. PubMed ID: 35001009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Background Behind the Amino Acid Profiles of Fermented Soybeans Produced by Four
    Jang M; Jeong DW; Heo G; Kong H; Kim CT; Lee JH
    J Microbiol Biotechnol; 2021 Mar; 31(3):447-455. PubMed ID: 33526757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trends in the application of Bacillus in fermented foods.
    Kimura 木村 啓太郎 K; Yokoyama 横山 智 S
    Curr Opin Biotechnol; 2019 Apr; 56():36-42. PubMed ID: 30227296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ochratoxin A reduction ability of biocontrol agent Bacillus subtilis isolated from Korean traditional fermented food Kimchi.
    Shukla S; Park JH; Chung SH; Kim M
    Sci Rep; 2018 May; 8(1):8039. PubMed ID: 29795296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red pepper powder is a crucial factor that influences the ontogeny of Weissella cibaria during kimchi fermentation.
    Kang BK; Cho MS; Park DS
    Sci Rep; 2016 Jun; 6():28232. PubMed ID: 27311801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reclassification of the biocontrol agents
    Mullins AJ; Li Y; Qin L; Hu X; Xie L; Gu C; Mahenthiralingam E; Liao X; Webster G
    Microbiology (Reading); 2020 Dec; 166(12):1121-1128. PubMed ID: 33205747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation and Removal of PAHs by
    Sultana OF; Lee S; Seo H; Mahmud HA; Kim S; Seo A; Kim M; Song HY
    J Microbiol Biotechnol; 2021 Jul; 31(7):999-1010. PubMed ID: 34024889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects.
    Zaid DS; Cai S; Hu C; Li Z; Li Y
    Microbiol Spectr; 2022 Feb; 10(1):e0216921. PubMed ID: 35107331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles.
    Palazzini JM; Dunlap CA; Bowman MJ; Chulze SN
    Microbiol Res; 2016 Nov; 192():30-36. PubMed ID: 27664721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete Nucleotide Sequence Analysis of a Novel
    Ghosh K; Senevirathne A; Kang HS; Hyun WB; Kim JE; Kim KP
    Viruses; 2018 May; 10(5):. PubMed ID: 29734701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a Fibrinolytic Enzyme Secreted by Bacillus velezensis BS2 Isolated from Sea Squirt Jeotgal.
    Yao Z; Kim JA; Kim JH
    J Microbiol Biotechnol; 2019 Mar; 29(3):347-356. PubMed ID: 30661324
    [No Abstract]   [Full Text] [Related]  

  • 13. Whole genome sequencing of the poly-γ-glutamic acid-producing novel Bacillus subtilis Tamang strain, isolated from spontaneously fermented kinema.
    Prakash Tamang J; Kharnaior P; Pariyar P
    Food Res Int; 2024 Aug; 190():114655. PubMed ID: 38945588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacillus velezensis: phylogeny, useful applications, and avenues for exploitation.
    Adeniji AA; Loots DT; Babalola OO
    Appl Microbiol Biotechnol; 2019 May; 103(9):3669-3682. PubMed ID: 30911788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacillus species isolated from tungrymbai and bekang, naturally fermented soybean foods of India.
    Chettri R; Tamang JP
    Int J Food Microbiol; 2015 Mar; 197():72-6. PubMed ID: 25574846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes.
    Eom JS; Lee SY; Choi HS
    J Food Sci; 2014 Nov; 79(11):M2279-87. PubMed ID: 25359543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Bacillus species occurring in Kantong, an acid fermented seed condiment produced in Ghana.
    Kpikpi EN; Thorsen L; Glover R; Dzogbefia VP; Jespersen L
    Int J Food Microbiol; 2014 Jun; 180():1-6. PubMed ID: 24747716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic marker gene, recQ, differentiating Bacillus subtilis and the closely related Bacillus species.
    Heo J; Kim JS; Hong SB; Park BY; Kim SJ; Kwon SW
    FEMS Microbiol Lett; 2019 Aug; 366(16):. PubMed ID: 31675066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promotion of Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris to species status.
    Dunlap CA; Bowman MJ; Zeigler DR
    Antonie Van Leeuwenhoek; 2020 Jan; 113(1):1-12. PubMed ID: 31721032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insight and metrics to understand the ontogeny and succession of Lactobacillus plantarum subsp. plantarum and Lactobacillus plantarum subsp. argentoratensis.
    Jin YJ; Park YK; Cho MS; Lee ES; Park DS
    Sci Rep; 2018 Apr; 8(1):6029. PubMed ID: 29662105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.