BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29728973)

  • 1. In situ pilot test for bioremediation of energetic compound-contaminated soil at a former military demolition range site.
    Jugnia LB; Manno D; Drouin K; Hendry M
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19436-19445. PubMed ID: 29728973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated vadose zone.
    Ronen Z; Yanovich Y; Goldin R; Adar E
    Chemosphere; 2008 Nov; 73(9):1492-8. PubMed ID: 18774159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii.
    Payne ZM; Lamichhane KM; Babcock RW; Turnbull SJ
    Environ Sci Process Impacts; 2013 Oct; 15(11):2023-9. PubMed ID: 24061783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Biodegradation of 2, 4- and 2, 6-dinitrotoluene in a pilot-scale system for soil contaminated with explosive compounds].
    He YL; Hughes JB; Sung S
    Huan Jing Ke Xue; 2007 Mar; 28(3):613-6. PubMed ID: 17633643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating redox conditions to enhance in situ bioremediation of RDX in groundwater at a contaminated site.
    Jugnia LB; Manno D; Dodard S; Greer CW; Hendry M
    Sci Total Environ; 2019 Aug; 676():368-377. PubMed ID: 31048167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory Column Evaluation of High Explosives Attenuation in Grenade Range Soils.
    Won J; Borden RC
    J Environ Qual; 2017 Sep; 46(5):968-974. PubMed ID: 28991974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation.
    Cho KC; Fuller ME; Hatzinger PB; Chu KH
    Sci Total Environ; 2016 Nov; 569-570():1098-1106. PubMed ID: 27387802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial community characterization and functional gene quantification in RDX-degrading microcosms derived from sediment and groundwater at two naval sites.
    Wilson FP; Cupples AM
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7297-309. PubMed ID: 27118012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First production-level bioremediation of explosives-contaminated soil in the United States.
    Emery DD; Faessler PC
    Ann N Y Acad Sci; 1997 Nov; 829():326-40. PubMed ID: 9472327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential biodegradation of TNT, RDX and HMX in a mixture.
    Sagi-Ben Moshe S; Ronen Z; Dahan O; Weisbrod N; Groisman L; Adar E; Nativ R
    Environ Pollut; 2009; 157(8-9):2231-8. PubMed ID: 19428165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chitin and temperature on sub-Arctic soil microbial and fungal communities and biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (DNT).
    Crocker FH; Jung CM; Indest KJ; Everman SJ; Carr MR
    Biodegradation; 2019 Dec; 30(5-6):415-431. PubMed ID: 31250271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a multiple lines of evidence approach to document natural attenuation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in groundwater.
    Fuller ME; Koster van Groos PG; Jarrett M; Kucharzyk KH; Minard-Smith A; Heraty LJ; Sturchio NC
    Chemosphere; 2020 Jul; 250():126210. PubMed ID: 32109698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved RDX detoxification with starch addition using a novel nitrogen-fixing aerobic microbial consortium from soil contaminated with explosives.
    Khan MI; Yang J; Yoo B; Park J
    J Hazard Mater; 2015 Apr; 287():243-51. PubMed ID: 25661171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake, bioaccumulation, and biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and its reduced metabolites (MNX and TNX) by the earthworm (Eisenia fetida).
    Zhang B; Pan X; Cobb GP; Anderson TA
    Chemosphere; 2009 Jun; 76(1):76-82. PubMed ID: 19278715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of microbial populations assimilating nitrogen from RDX in munitions contaminated military training range soils by high sensitivity stable isotope probing.
    Andeer P; Stahl DA; Lillis L; Strand SE
    Environ Sci Technol; 2013 Sep; 47(18):10356-63. PubMed ID: 23909596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of RDX within soil-water slurries using a combination of differing redox incubation conditions.
    Waisner S; Hansen L; Fredrickson H; Nestler C; Zappi M; Banerji S; Bajpai R
    J Hazard Mater; 2002 Nov; 95(1-2):91-106. PubMed ID: 12409241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight on RDX degradation mechanism by Rhodococcus strains using 13C and 15N kinetic isotope effects.
    Bernstein A; Ronen Z; Gelman F
    Environ Sci Technol; 2013 Jan; 47(1):479-84. PubMed ID: 23215036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel egg shell-based bio formulation for remediation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) contaminated soil.
    Kalsi A; Celin SM; Bhanot P; Sahai S; Sharma JG
    J Hazard Mater; 2021 Jan; 401():123346. PubMed ID: 32659577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic biotransformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by aquifer bacteria using hydrogen as the sole electron donor.
    Beller HR
    Water Res; 2002 May; 36(10):2533-40. PubMed ID: 12153019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photobiological transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using Rhodobacter sphaeroides.
    Millerick KA; Johnston JT; Finneran KT
    Chemosphere; 2016 Sep; 159():138-144. PubMed ID: 27285383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.