These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29729219)

  • 1. Finding invisible quantitative trait loci with missing data.
    Gabur I; Chawla HS; Liu X; Kumar V; Faure S; von Tiedemann A; Jestin C; Dryzska E; Volkmann S; Breuer F; Delourme R; Snowdon R; Obermeier C
    Plant Biotechnol J; 2018 Dec; 16(12):2102-2112. PubMed ID: 29729219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bi-filtering method for processing single nucleotide polymorphism array data improves the quality of genetic map and accuracy of quantitative trait locus mapping in doubled haploid populations of polyploid Brassica napus.
    Cai G; Yang Q; Yi B; Fan C; Zhang C; Edwards D; Batley J; Zhou Y
    BMC Genomics; 2015 May; 16(1):409. PubMed ID: 26018616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene presence-absence variation associates with quantitative Verticillium longisporum disease resistance in Brassica napus.
    Gabur I; Chawla HS; Lopisso DT; von Tiedemann A; Snowdon RJ; Obermeier C
    Sci Rep; 2020 Mar; 10(1):4131. PubMed ID: 32139810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits.
    Raman H; Raman R; Kilian A; Detering F; Long Y; Edwards D; Parkin IA; Sharpe AG; Nelson MN; Larkan N; Zou J; Meng J; Aslam MN; Batley J; Cowling WA; Lydiate D
    BMC Genomics; 2013 Apr; 14():277. PubMed ID: 23617817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homoeologous duplicated regions are involved in quantitative resistance of Brassica napus to stem canker.
    Fopa Fomeju B; Falentin C; Lassalle G; Manzanares-Dauleux MJ; Delourme R
    BMC Genomics; 2014 Jun; 15(1):498. PubMed ID: 24948032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus.
    Stein A; Coriton O; Rousseau-Gueutin M; Samans B; Schiessl SV; Obermeier C; Parkin IAP; Chèvre AM; Snowdon RJ
    Plant Biotechnol J; 2017 Nov; 15(11):1478-1489. PubMed ID: 28370938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes.
    Dalton-Morgan J; Hayward A; Alamery S; Tollenaere R; Mason AS; Campbell E; Patel D; Lorenc MT; Yi B; Long Y; Meng J; Raman R; Raman H; Lawley C; Edwards D; Batley J
    Funct Integr Genomics; 2014 Dec; 14(4):643-55. PubMed ID: 25147024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Status and advances in mining for blackleg (Leptosphaeria maculans) quantitative resistance (QR) in oilseed rape (Brassica napus).
    Amas J; Anderson R; Edwards D; Cowling W; Batley J
    Theor Appl Genet; 2021 Oct; 134(10):3123-3145. PubMed ID: 34104999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome wide analysis of flowering time trait in multiple environments via high-throughput genotyping technique in Brassica napus L.
    Li L; Long Y; Zhang L; Dalton-Morgan J; Batley J; Yu L; Meng J; Li M
    PLoS One; 2015; 10(3):e0119425. PubMed ID: 25790019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping a major QTL responsible for dwarf architecture in Brassica napus using a single-nucleotide polymorphism marker approach.
    Wang Y; Chen W; Chu P; Wan S; Yang M; Wang M; Guan R
    BMC Plant Biol; 2016 Aug; 16(1):178. PubMed ID: 27538713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L.
    Delourme R; Falentin C; Fomeju BF; Boillot M; Lassalle G; André I; Duarte J; Gauthier V; Lucante N; Marty A; Pauchon M; Pichon JP; Ribière N; Trotoux G; Blanchard P; Rivière N; Martinant JP; Pauquet J
    BMC Genomics; 2013 Feb; 14():120. PubMed ID: 23432809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus.
    Schiessl S; Iniguez-Luy F; Qian W; Snowdon RJ
    BMC Genomics; 2015 Sep; 16():737. PubMed ID: 26419915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation.
    Dolatabadian A; Bayer PE; Tirnaz S; Hurgobin B; Edwards D; Batley J
    Plant Biotechnol J; 2020 Apr; 18(4):969-982. PubMed ID: 31553100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply.
    Wang X; Chen Y; Thomas CL; Ding G; Xu P; Shi D; Grandke F; Jin K; Cai H; Xu F; Yi B; Broadley MR; Shi L
    DNA Res; 2017 Aug; 24(4):407-417. PubMed ID: 28430897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative quantitative trait loci for silique length and seed weight in Brassica napus.
    Fu Y; Wei D; Dong H; He Y; Cui Y; Mei J; Wan H; Li J; Snowdon R; Friedt W; Li X; Qian W
    Sci Rep; 2015 Sep; 5():14407. PubMed ID: 26394547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Syntenic quantitative trait loci and genomic divergence for Sclerotinia resistance and flowering time in Brassica napus.
    Zhang F; Huang J; Tang M; Cheng X; Liu Y; Tong C; Yu J; Sadia T; Dong C; Liu L; Tang B; Chen J; Liu S
    J Integr Plant Biol; 2019 Jan; 61(1):75-88. PubMed ID: 30506639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome.
    Clarke WE; Higgins EE; Plieske J; Wieseke R; Sidebottom C; Khedikar Y; Batley J; Edwards D; Meng J; Li R; Lawley CT; Pauquet J; Laga B; Cheung W; Iniguez-Luy F; Dyrszka E; Rae S; Stich B; Snowdon RJ; Sharpe AG; Ganal MW; Parkin IA
    Theor Appl Genet; 2016 Oct; 129(10):1887-99. PubMed ID: 27364915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of
    Farid M; Yang RC; Kebede B; Rahman H
    Genome; 2020 Feb; 63(2):91-101. PubMed ID: 31600449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Association Mapping in Brassica napus L.: Methods and Applications.
    Gill RA; Helal MMU; Tang M; Hu M; Tong C; Liu S
    Methods Mol Biol; 2023; 2638():67-91. PubMed ID: 36781636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus.
    Song JM; Guan Z; Hu J; Guo C; Yang Z; Wang S; Liu D; Wang B; Lu S; Zhou R; Xie WZ; Cheng Y; Zhang Y; Liu K; Yang QY; Chen LL; Guo L
    Nat Plants; 2020 Jan; 6(1):34-45. PubMed ID: 31932676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.