BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29729314)

  • 1. The human MAPT locus generates circular RNAs.
    Welden JR; van Doorn J; Nelson PT; Stamm S
    Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt B):2753-2760. PubMed ID: 29729314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA editing of microtubule-associated protein tau circular RNAs promotes their translation and tau tangle formation.
    Welden JR; Margvelani G; Arizaca Maquera KA; Gudlavalleti B; Miranda Sardón SC; Campos AR; Robil N; Lee DC; Hernandez AG; Wang WX; Di J; de la Grange P; Nelson PT; Stamm S
    Nucleic Acids Res; 2022 Dec; 50(22):12979-12996. PubMed ID: 36533443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies.
    Forrest SL; Kril JJ; Stevens CH; Kwok JB; Hallupp M; Kim WS; Huang Y; McGinley CV; Werka H; Kiernan MC; Götz J; Spillantini MG; Hodges JR; Ittner LM; Halliday GM
    Brain; 2018 Feb; 141(2):521-534. PubMed ID: 29253099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tau alternative splicing in familial and sporadic tauopathies.
    Niblock M; Gallo JM
    Biochem Soc Trans; 2012 Aug; 40(4):677-80. PubMed ID: 22817715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An SRp75/hnRNPG complex interacting with hnRNPE2 regulates the 5' splice site of tau exon 10, whose misregulation causes frontotemporal dementia.
    Wang Y; Wang J; Gao L; Stamm S; Andreadis A
    Gene; 2011 Oct; 485(2):130-8. PubMed ID: 21723381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dysregulated coordination of MAPT exon 2 and exon 10 splicing underlies different tau pathologies in PSP and AD.
    Bowles KR; Pugh DA; Oja LM; Jadow BM; Farrell K; Whitney K; Sharma A; Cherry JD; Raj T; Pereira AC; Crary JF; Goate AM
    Acta Neuropathol; 2022 Feb; 143(2):225-243. PubMed ID: 34874463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frontotemporal dementia-associated N279K tau mutant disrupts subcellular vesicle trafficking and induces cellular stress in iPSC-derived neural stem cells.
    Wren MC; Zhao J; Liu CC; Murray ME; Atagi Y; Davis MD; Fu Y; Okano HJ; Ogaki K; Strongosky AJ; Tacik P; Rademakers R; Ross OA; Dickson DW; Wszolek ZK; Kanekiyo T; Bu G
    Mol Neurodegener; 2015 Sep; 10():46. PubMed ID: 26373282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants for alternative splicing regulation of the MAPT pre-mRNA.
    Lisowiec J; Magner D; Kierzek E; Lenartowicz E; Kierzek R
    RNA Biol; 2015; 12(3):330-42. PubMed ID: 25826665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tau Isoforms: Gaining Insight into
    Corsi A; Bombieri C; Valenti MT; Romanelli MG
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A heterozygous splicing variant IVS9-7A > T in intron 9 of the MAPT gene in a patient with right-temporal variant frontotemporal dementia with atypical 4 repeat tauopathy.
    Mori K; Shigenobu K; Beck G; Uozumi R; Satake Y; Suzuki M; Kondo S; Gotoh S; Yonenobu Y; Kawai M; Suzuki Y; Saito Y; Morii E; Hasegawa M; Mochizuki H; Murayama S; Ikeda M
    Acta Neuropathol Commun; 2023 Aug; 11(1):130. PubMed ID: 37563653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinicopathologic heterogeneity in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) due to microtubule-associated protein tau (MAPT) p.P301L mutation, including a patient with globular glial tauopathy.
    Tacik P; Sanchez-Contreras M; DeTure M; Murray ME; Rademakers R; Ross OA; Wszolek ZK; Parisi JE; Knopman DS; Petersen RC; Dickson DW
    Neuropathol Appl Neurobiol; 2017 Apr; 43(3):200-214. PubMed ID: 27859539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT.
    Sposito T; Preza E; Mahoney CJ; Setó-Salvia N; Ryan NS; Morris HR; Arber C; Devine MJ; Houlden H; Warner TT; Bushell TJ; Zagnoni M; Kunath T; Livesey FJ; Fox NC; Rossor MN; Hardy J; Wray S
    Hum Mol Genet; 2015 Sep; 24(18):5260-9. PubMed ID: 26136155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tauopathies: Deciphering Disease Mechanisms to Develop Effective Therapies.
    Silva MC; Haggarty SJ
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A minimal length between tau exon 10 and 11 is required for correct splicing of exon 10.
    Yu Q; Guo J; Zhou J
    J Neurochem; 2004 Jul; 90(1):164-72. PubMed ID: 15198676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The novel MAPT mutation K298E: mechanisms of mutant tau toxicity, brain pathology and tau expression in induced fibroblast-derived neurons.
    Iovino M; Pfisterer U; Holton JL; Lashley T; Swingler RJ; Calo L; Treacy R; Revesz T; Parmar M; Goedert M; Muqit MM; Spillantini MG
    Acta Neuropathol; 2014 Feb; 127(2):283-95. PubMed ID: 24292008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogenic MAPT mutations Q336H and Q336R have isoform-dependent differences in aggregation propensity and microtubule dysfunction.
    Xia Y; Nasif L; Giasson BI
    J Neurochem; 2021 Jul; 158(2):455-466. PubMed ID: 33772783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular Tau levels are influenced by variability in Tau that is associated with tauopathies.
    Karch CM; Jeng AT; Goate AM
    J Biol Chem; 2012 Dec; 287(51):42751-62. PubMed ID: 23105105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies.
    Trabzuni D; Wray S; Vandrovcova J; Ramasamy A; Walker R; Smith C; Luk C; Gibbs JR; Dillman A; Hernandez DG; Arepalli S; Singleton AB; Cookson MR; Pittman AM; de Silva R; Weale ME; Hardy J; Ryten M
    Hum Mol Genet; 2012 Sep; 21(18):4094-103. PubMed ID: 22723018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Pathogenesis of the Tauopathies.
    Götz J; Halliday G; Nisbet RM
    Annu Rev Pathol; 2019 Jan; 14():239-261. PubMed ID: 30355155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of alternative splicing of tau exon 10.
    Qian W; Liu F
    Neurosci Bull; 2014 Apr; 30(2):367-77. PubMed ID: 24627328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.