BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 29729318)

  • 1. Bioethanol production by a xylan fermenting thermophilic isolate Clostridium strain DBT-IOC-DC21.
    Singh N; Puri M; Tuli DK; Gupta RP; Barrow CJ; Mathur AS
    Anaerobe; 2018 Jun; 51():89-98. PubMed ID: 29729318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol production efficiency of an anaerobic hemicellulolytic thermophilic bacterium, strain NTOU1, isolated from a marine shallow hydrothermal vent in Taiwan.
    Tsai TL; Liu SM; Lee SC; Chen WJ; Chou SH; Hsu TC; Guo GL; Hwang WS; Wiegel J
    Microbes Environ; 2011; 26(4):317-24. PubMed ID: 21691041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of Clostridium from Yunnan-Tibet hot springs and description of Clostridium thermarum sp. nov. with lignocellulosic ethanol production.
    Liu L; Jiao JY; Fang BZ; Lv AP; Ming YZ; Li MM; Salam N; Li WJ
    Syst Appl Microbiol; 2020 Sep; 43(5):126104. PubMed ID: 32847779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas.
    Koskinen PE; Beck SR; Orlygsson J; Puhakka JA
    Biotechnol Bioeng; 2008 Nov; 101(4):679-90. PubMed ID: 18500766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.
    Singh N; Mathur AS; Tuli DK; Gupta RP; Barrow CJ; Puri M
    Biotechnol Biofuels; 2017; 10():73. PubMed ID: 28344648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost.
    Sizova MV; Izquierdo JA; Panikov NS; Lynd LR
    Appl Environ Microbiol; 2011 Apr; 77(7):2282-91. PubMed ID: 21317267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clostridium swellfunianum sp. nov., a novel anaerobic bacterium isolated from the pit mud of Chinese Luzhou-flavor liquor production.
    Liu C; Huang D; Liu L; Zhang J; Deng Y; Chen L; Zhang W; Wu Z; Fan A; Lai D; Dai L
    Antonie Van Leeuwenhoek; 2014 Oct; 106(4):817-25. PubMed ID: 25103947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct conversion of xylan to butanol by a wild-type Clostridium species strain G117.
    Yan Y; Basu A; Li T; He J
    Biotechnol Bioeng; 2016 Aug; 113(8):1702-10. PubMed ID: 26803924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clostridium amylolyticum sp. nov., isolated from H2-producing UASB granules.
    Song L; Dong X
    Int J Syst Evol Microbiol; 2008 Sep; 58(Pt 9):2132-5. PubMed ID: 18768618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clostridium algidixylanolyticum sp. nov., a psychrotolerant, xylan-degrading, spore-forming bacterium.
    Broda DM; Saul DJ; Bell RG; Musgrave DR
    Int J Syst Evol Microbiol; 2000 Mar; 50 Pt 2():623-631. PubMed ID: 10758868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil.
    Warnick TA; Methé BA; Leschine SB
    Int J Syst Evol Microbiol; 2002 Jul; 52(Pt 4):1155-1160. PubMed ID: 12148621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation of Xylose Fermentability in Phlebia Species and Direct Fermentation of Xylan by Selected Fungi.
    Kamei I; Uchida K; Ardianti V
    Appl Biochem Biotechnol; 2020 Nov; 192(3):895-909. PubMed ID: 32607899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of a hydrogen- and ethanol-producing Clostridium sp. strain URNW.
    Ramachandran U; Wrana N; Cicek N; Sparling R; Levin DB
    Can J Microbiol; 2011 Mar; 57(3):236-43. PubMed ID: 21358765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic and proteomic analyses of core metabolism in Clostridium termitidis CT1112 during growth on α-cellulose, xylan, cellobiose and xylose.
    Munir RI; Spicer V; Krokhin OV; Shamshurin D; Zhang X; Taillefer M; Blunt W; Cicek N; Sparling R; Levin DB
    BMC Microbiol; 2016 May; 16():91. PubMed ID: 27215540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆.
    Singh N; Mathur AS; Gupta RP; Barrow CJ; Tuli D; Puri M
    Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trophic links between the acetogen Clostridium glycolicum KHa and the fermentative anaerobe Bacteroides xylanolyticus KHb, isolated from Hawaiian forest soil.
    Hunger S; Gössner AS; Drake HL
    Appl Environ Microbiol; 2011 Sep; 77(17):6281-5. PubMed ID: 21764978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clostridium sufflavum sp. nov., isolated from a methanogenic reactor treating cattle waste.
    Nishiyama T; Ueki A; Kaku N; Ueki K
    Int J Syst Evol Microbiol; 2009 May; 59(Pt 5):981-6. PubMed ID: 19406778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetone-butanol-ethanol production from substandard and surplus dates by Egyptian native Clostridium strains.
    Abd-Alla MH; Zohri AA; El-Enany AE; Ali SM
    Anaerobe; 2015 Apr; 32():77-86. PubMed ID: 25557787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clostridium vulturis sp. nov., isolated from the intestine of the cinereous vulture (Aegypius monachus).
    Paek J; Lee MH; Kim BC; Sang BI; Paek WK; Jin TE; Shin Y; Park IS; Chang YH
    Antonie Van Leeuwenhoek; 2014 Sep; 106(3):577-83. PubMed ID: 25063360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.