BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29729563)

  • 1. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores.
    Chu G; Zhao J; Huang Y; Zhou D; Liu Y; Wu M; Peng H; Zhao Q; Pan B; Steinberg CEW
    Environ Pollut; 2018 Sep; 240():1-9. PubMed ID: 29729563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation.
    Chu G; Zhao J; Chen F; Dong X; Zhou D; Liang N; Wu M; Pan B; Steinberg CEW
    Environ Pollut; 2017 Aug; 227():372-379. PubMed ID: 28482317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relative importance of different carbon structures in biochars to carbamazepine and bisphenol A sorption.
    Chu G; Zhao J; Liu Y; Lang D; Wu M; Pan B; Steinberg CEW
    J Hazard Mater; 2019 Jul; 373():106-114. PubMed ID: 30909135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 °C.
    Yang K; Jiang Y; Yang J; Lin D
    Environ Pollut; 2018 Feb; 233():64-70. PubMed ID: 29053999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of Phosphoric Acid in Biochar Formation: Synchronously Improving Carbon Retention and Sorption Capacity.
    Zhao L; Zheng W; Mašek O; Chen X; Gu B; Sharma BK; Cao X
    J Environ Qual; 2017 Mar; 46(2):393-401. PubMed ID: 28380545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars.
    Peng H; Gao P; Chu G; Pan B; Peng J; Xing B
    Environ Pollut; 2017 Oct; 229():846-853. PubMed ID: 28779896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars.
    Jung C; Park J; Lim KH; Park S; Heo J; Her N; Oh J; Yun S; Yoon Y
    J Hazard Mater; 2013 Dec; 263 Pt 2():702-10. PubMed ID: 24231319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contrasting role of minerals in biochars in bisphenol A and sulfamethoxazole sorption.
    Zhao J; Zhou D; Zhang J; Li F; Chu G; Wu M; Pan B; Steinberg CEW
    Chemosphere; 2021 Feb; 264(Pt 1):128490. PubMed ID: 33035951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the attenuated sorption of organic compounds on black carbon aged in soil.
    Luo L; Lv J; Chen Z; Huang R; Zhang S
    Environ Pollut; 2017 Dec; 231(Pt 2):1469-1476. PubMed ID: 28935407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of different biomass components to the sorption of 1,2,4-trichlorobenzene under a series of pyrolytic temperatures.
    Han L; Qian L; Yan J; Chen M
    Chemosphere; 2016 Aug; 156():262-271. PubMed ID: 27179244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes.
    Li J; Liang N; Jin X; Zhou D; Li H; Wu M; Pan B
    Chemosphere; 2017 Mar; 171():66-73. PubMed ID: 28002768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis of wetland biomass waste: Potential for carbon sequestration and water remediation.
    Cui X; Hao H; He Z; Stoffella PJ; Yang X
    J Environ Manage; 2016 May; 173():95-104. PubMed ID: 26978731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption.
    Zhang P; Sun H; Ren C; Min L; Zhang H
    Environ Pollut; 2018 Mar; 234():812-820. PubMed ID: 29247944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes.
    Hall KE; Spokas KA; Gamiz B; Cox L; Papiernik SK; Koskinen WC
    Pest Manag Sci; 2018 May; 74(5):1206-1212. PubMed ID: 28111921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K
    J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization and application of magnetic and acid modified biochars following alkaline pretreatment of rice and cotton straws.
    Rizwan M; Lin Q; Chen X; Li Y; Li G; Zhao X; Tian Y
    Sci Total Environ; 2020 Apr; 714():136532. PubMed ID: 31981863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: Conclusions from single- and bi-solute experiments.
    Schreiter IJ; Schmidt W; Schüth C
    Chemosphere; 2018 Jul; 203():34-43. PubMed ID: 29605747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering surface area and micropores in almond shell biochars by rainwater wash.
    Thomas Klasson K; Uchimiya M; Lima IM
    Chemosphere; 2014 Sep; 111():129-34. PubMed ID: 24997909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of modified biochars prepared at low pyrolysis temperature as an efficient adsorbent for atrazine removal.
    Zhao L; Yang F; Jiang Q; Zhu M; Jiang Z; Tang Y; Zhang Y
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1405-1417. PubMed ID: 29090437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis.
    Huff MD; Kumar S; Lee JW
    J Environ Manage; 2014 Dec; 146():303-308. PubMed ID: 25190598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.