BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29729578)

  • 1. Uncoupled poroelastic and intrinsic viscoelastic dissipation in cartilage.
    Han G; Hess C; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2018 Aug; 84():28-34. PubMed ID: 29729578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage.
    Wahlquist JA; DelRio FW; Randolph MA; Aziz AH; Heveran CM; Bryant SJ; Neu CP; Ferguson VL
    Acta Biomater; 2017 Dec; 64():41-49. PubMed ID: 29037894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale.
    Su L; Wang M; Yin J; Ti F; Yang J; Ma C; Liu S; Lu TJ
    Acta Biomater; 2023 Jan; 155():423-435. PubMed ID: 36372152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological connective tissues exhibit viscoelastic and poroelastic behavior at different frequency regimes: Application to tendon and skin biophysics.
    Oftadeh R; Connizzo BK; Nia HT; Ortiz C; Grodzinsky AJ
    Acta Biomater; 2018 Apr; 70():249-259. PubMed ID: 29425716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I--Simultaneous prediction of reaction force and lateral displacement.
    DiSilvestro MR; Zhu Q; Wong M; Jurvelin JS; Suh JK
    J Biomech Eng; 2001 Apr; 123(2):191-7. PubMed ID: 11340881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II--Effect of variable strain rates.
    DiSilvestro MR; Zhu Q; Suh JK
    J Biomech Eng; 2001 Apr; 123(2):198-200. PubMed ID: 11340882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate-dependent crack nucleation in cartilage under microindentation.
    Han G; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2019 Aug; 96():186-192. PubMed ID: 31054513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrometry as a noncontact alternative to dynamic and viscoelastic mechanical testing in cartilage.
    Espinosa MG; Otarola GA; Hu JC; Athanasiou KA
    J R Soc Interface; 2021 Dec; 18(185):20210765. PubMed ID: 34932927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage.
    Huang CY; Mow VC; Ateshian GA
    J Biomech Eng; 2001 Oct; 123(5):410-7. PubMed ID: 11601725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The apparent viscoelastic behavior of articular cartilage--the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows.
    Mak AF
    J Biomech Eng; 1986 May; 108(2):123-30. PubMed ID: 3724099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic viscoelasticity increases temperature in knee cartilage under physiological loading.
    Abdel-Sayed P; Moghadam MN; Salomir R; Tchernin D; Pioletti DP
    J Mech Behav Biomed Mater; 2014 Feb; 30():123-30. PubMed ID: 24287306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimum design requirements for a poroelastic mimic of articular cartilage.
    Tan WS; Moore AC; Stevens MM
    J Mech Behav Biomed Mater; 2023 Jan; 137():105528. PubMed ID: 36343521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of viscous behavior and shear energy dissipation in articular cartilage under dynamic shear loading.
    Buckley MR; Bonassar LJ; Cohen I
    J Biomech Eng; 2013 Mar; 135(3):31002. PubMed ID: 24231813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poroelastic response of articular cartilage by nanoindentation creep tests at different characteristic lengths.
    Taffetani M; Gottardi R; Gastaldi D; Raiteri R; Vena P
    Med Eng Phys; 2014 Jul; 36(7):850-8. PubMed ID: 24814573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of enzymatic treatments on the depth-dependent viscoelastic shear properties of articular cartilage.
    Griffin DJ; Vicari J; Buckley MR; Silverberg JL; Cohen I; Bonassar LJ
    J Orthop Res; 2014 Dec; 32(12):1652-7. PubMed ID: 25196502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillatory compressional behavior of articular cartilage and its associated electromechanical properties.
    Lee RC; Frank EH; Grodzinsky AJ; Roylance DK
    J Biomech Eng; 1981 Nov; 103(4):280-92. PubMed ID: 7311495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.