BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29729578)

  • 21. Effects of solvent osmolarity and viscosity on cartilage energy dissipation under high-frequency loading.
    Hwang JW; Chawla D; Han G; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2022 Feb; 126():105014. PubMed ID: 34871958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical study of temperature effects on the poro-viscoelastic behavior of articular cartilage.
    Behrou R; Foroughi H; Haghpanah F
    J Mech Behav Biomed Mater; 2018 Feb; 78():214-223. PubMed ID: 29174620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments.
    Zhu W; Mow VC; Koob TJ; Eyre DR
    J Orthop Res; 1993 Nov; 11(6):771-81. PubMed ID: 8283321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of hydration on the frequency-dependent viscoelastic properties of articular cartilage.
    Pearson B; Espino DM
    Proc Inst Mech Eng H; 2013 Nov; 227(11):1246-52. PubMed ID: 23982065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Matrix deposition modulates the viscoelastic shear properties of hydrogel-based cartilage grafts.
    Wan LQ; Jiang J; Miller DE; Guo XE; Mow VC; Lu HH
    Tissue Eng Part A; 2011 Apr; 17(7-8):1111-22. PubMed ID: 21142626
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glycosaminoglycan depletion increases energy dissipation in articular cartilage under high-frequency loading.
    Han G; Boz U; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2020 Oct; 110():103876. PubMed ID: 32957186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of temperature dependent mechanical behavior of cartilage.
    Chae Y; Aguilar G; Lavernia EJ; Wong BJ
    Lasers Surg Med; 2003; 32(4):271-8. PubMed ID: 12696094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tissue composition regulates distinct viscoelastic responses in auricular and articular cartilage.
    Nimeskern L; Utomo L; Lehtoviita I; Fessel G; Snedeker JG; van Osch GJ; Müller R; Stok KS
    J Biomech; 2016 Feb; 49(3):344-52. PubMed ID: 26772799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends.
    Temple DK; Cederlund AA; Lawless BM; Aspden RM; Espino DM
    BMC Musculoskelet Disord; 2016 Oct; 17(1):419. PubMed ID: 27716169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The poro-viscoelastic properties of trabecular bone: a micro computed tomography-based finite element study.
    Sandino C; McErlain DD; Schipilow J; Boyd SK
    J Mech Behav Biomed Mater; 2015 Apr; 44():1-9. PubMed ID: 25591049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How preconditioning affects the measurement of poro-viscoelastic mechanical properties in biological tissues.
    Hosseini SM; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2014 Jun; 13(3):503-13. PubMed ID: 23864393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology.
    Connizzo BK; Grodzinsky AJ
    J Biomech; 2017 Mar; 54():11-18. PubMed ID: 28233551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation.
    Li LP; Herzog W
    Biorheology; 2004; 41(3-4):181-94. PubMed ID: 15299251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cartilages is poroelastic, not viscoelastic (including an exact theorem about strain energy and viscous loss, and an order of magnitude relation for equilibration time).
    McCutchen CW
    J Biomech; 1982; 15(4):325-7. PubMed ID: 7096387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A linear viscoelastic biphasic model for soft tissues based on the Theory of Porous Media.
    Ehlers W; Markert B
    J Biomech Eng; 2001 Oct; 123(5):418-24. PubMed ID: 11601726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variation in viscoelastic properties of bovine articular cartilage below, up to and above healthy gait-relevant loading frequencies.
    Sadeghi H; Espino DM; Shepherd DE
    Proc Inst Mech Eng H; 2015 Feb; 229(2):115-23. PubMed ID: 25767149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue.
    Hatami-Marbini H; Maulik R
    J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of collagen crosslinking on the biphasic poroviscoelastic cartilage properties determined from a semi-automated microindentation protocol for stress relaxation.
    McGann ME; Bonitsky CM; Ovaert TC; Wagner DR
    J Mech Behav Biomed Mater; 2014 Jun; 34():264-72. PubMed ID: 24631625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fiber reinforced hydrated networks recapitulate the poroelastic mechanics of articular cartilage.
    Moore AC; Hennessy MG; Nogueira LP; Franks SJ; Taffetani M; Seong H; Kang YK; Tan WS; Miklosic G; El Laham R; Zhou K; Zharova L; King JR; Wagner B; Haugen HJ; Münch A; Stevens MM
    Acta Biomater; 2023 Sep; 167():69-82. PubMed ID: 37331613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.