These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 29730402)
1. Response of three citrus genotypes used as rootstocks grown under boron excess conditions. Simón-Grao S; Nieves M; Martínez-Nicolás JJ; Cámara-Zapata JM; Alfosea-Simón M; García-Sánchez F Ecotoxicol Environ Saf; 2018 Sep; 159():10-19. PubMed ID: 29730402 [TBL] [Abstract][Full Text] [Related]
2. Arbuscular mycorrhizal symbiosis improves tolerance of Carrizo citrange to excess boron supply by reducing leaf B concentration and toxicity in the leaves and roots. Simón-Grao S; Nieves M; Martínez-Nicolás JJ; Alfosea-Simón M; Cámara-Zapata JM; Fernández-Zapata JC; García-Sánchez F Ecotoxicol Environ Saf; 2019 May; 173():322-330. PubMed ID: 30784795 [TBL] [Abstract][Full Text] [Related]
3. Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Arbona V; Flors V; Jacas J; García-Agustín P; Gómez-Cadenas A Plant Cell Physiol; 2003 Apr; 44(4):388-94. PubMed ID: 12721379 [TBL] [Abstract][Full Text] [Related]
4. Tetraploidy enhances the ability to exclude chloride from leaves in carrizo citrange seedlings. Ruiz M; Quiñones A; Martínez-Cuenca MR; Aleza P; Morillon R; Navarro L; Primo-Millo E; Martínez-Alcántara B J Plant Physiol; 2016 Oct; 205():1-10. PubMed ID: 27589221 [TBL] [Abstract][Full Text] [Related]
5. cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity. Guo P; Qi YP; Yang LT; Ye X; Jiang HX; Huang JH; Chen LS BMC Plant Biol; 2014 Oct; 14():284. PubMed ID: 25348611 [TBL] [Abstract][Full Text] [Related]
6. Aluminum-responsive genes revealed by RNA-Seq and related physiological responses in leaves of two Citrus species with contrasting aluminum-tolerance. Guo P; Qi YP; Huang WL; Yang LT; Huang ZR; Lai NW; Chen LS Ecotoxicol Environ Saf; 2018 Aug; 158():213-222. PubMed ID: 29704792 [TBL] [Abstract][Full Text] [Related]
7. Resveratrol and its combination with α-tocopherol mediate salt adaptation in citrus seedlings. Kostopoulou Z; Therios I; Molassiotis A Plant Physiol Biochem; 2014 May; 78():1-9. PubMed ID: 24602773 [TBL] [Abstract][Full Text] [Related]
8. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Kostopoulou Z; Therios I; Roumeliotis E; Kanellis AK; Molassiotis A Plant Physiol Biochem; 2015 Jan; 86():155-165. PubMed ID: 25500452 [TBL] [Abstract][Full Text] [Related]
9. Illumina microRNA profiles reveal the involvement of miR397a in Citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis. Huang JH; Qi YP; Wen SX; Guo P; Chen XM; Chen LS Sci Rep; 2016 Mar; 6():22900. PubMed ID: 26962011 [TBL] [Abstract][Full Text] [Related]
10. Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings. Li Q; Chen LS; Jiang HX; Tang N; Yang LT; Lin ZH; Li Y; Yang GH BMC Plant Biol; 2010 Mar; 10():42. PubMed ID: 20205939 [TBL] [Abstract][Full Text] [Related]
11. Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo. Podazza G; Arias M; Prado FE J Hazard Mater; 2012 May; 215-216():83-9. PubMed ID: 22410717 [TBL] [Abstract][Full Text] [Related]
12. Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. Han S; Chen LS; Jiang HX; Smith BR; Yang LT; Xie CY J Plant Physiol; 2008 Sep; 165(13):1331-41. PubMed ID: 18191499 [TBL] [Abstract][Full Text] [Related]
13. Deficiency and toxicity of boron: Alterations in growth, oxidative damage and uptake by citrange orange plants. Shah A; Wu X; Ullah A; Fahad S; Muhammad R; Yan L; Jiang C Ecotoxicol Environ Saf; 2017 Nov; 145():575-582. PubMed ID: 28800533 [TBL] [Abstract][Full Text] [Related]
14. Physiological and Molecular Responses to Excess Boron in Citrus macrophylla W. Martínez-Cuenca MR; Martínez-Alcántara B; Quiñones A; Ruiz M; Iglesias DJ; Primo-Millo E; Forner-Giner MÁ PLoS One; 2015; 10(7):e0134372. PubMed ID: 26225859 [TBL] [Abstract][Full Text] [Related]
15. Excess copper effects on growth, uptake of water and nutrients, carbohydrates, and PSII photochemistry revealed by OJIP transients in Citrus seedlings. Li Q; Chen HH; Qi YP; Ye X; Yang LT; Huang ZR; Chen LS Environ Sci Pollut Res Int; 2019 Oct; 26(29):30188-30205. PubMed ID: 31422532 [TBL] [Abstract][Full Text] [Related]
17. The effect of kinetin on wheat seedlings exposed to boron. Eser A; Aydemir T Plant Physiol Biochem; 2016 Nov; 108():158-164. PubMed ID: 27428370 [TBL] [Abstract][Full Text] [Related]
18. Boron excess affects photosynthesis and antioxidant apparatus of greenhouse Cucurbita pepo and Cucumis sativus. Landi M; Remorini D; Pardossi A; Guidi L J Plant Res; 2013 Nov; 126(6):775-86. PubMed ID: 23779070 [TBL] [Abstract][Full Text] [Related]
19. Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. Moya JL; Gómez-Cadenas A; Primo-Millo E; Talon M J Exp Bot; 2003 Feb; 54(383):825-33. PubMed ID: 12554725 [TBL] [Abstract][Full Text] [Related]
20. Tolerance of citrus rootstock seedlings to saline stress based on their ability to regulate ion uptake and transport. Fernández-Ballester G; García-Sánchez F; Cerdá A; Martínez V Tree Physiol; 2003 Mar; 23(4):265-71. PubMed ID: 12566262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]