These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

667 related articles for article (PubMed ID: 29730488)

  • 1. The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review.
    Benson LC; Clermont CA; Bošnjak E; Ferber R
    Gait Posture; 2018 Jun; 63():124-138. PubMed ID: 29730488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearables for Running Gait Analysis: A Systematic Review.
    Mason R; Pearson LT; Barry G; Young F; Lennon O; Godfrey A; Stuart S
    Sports Med; 2023 Jan; 53(1):241-268. PubMed ID: 36242762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subject-specific and group-based running pattern classification using a single wearable sensor.
    Ahamed NU; Kobsar D; Benson LC; Clermont CA; Osis ST; Ferber R
    J Biomech; 2019 Feb; 84():227-233. PubMed ID: 30670327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Reliability and Validity of the Loadsol
    Renner KE; Williams DSB; Queen RM
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30641910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are Gait Patterns during In-Lab Running Representative of Gait Patterns during Real-World Training? An Experimental Study.
    Davis JJ; Meardon SA; Brown AW; Raglin JS; Harezlak J; Gruber AH
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38732998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital wearable insole-based identification of knee arthropathies and gait signatures using machine learning.
    Wipperman MF; Lin AZ; Gayvert KM; Lahner B; Somersan-Karakaya S; Wu X; Im J; Lee M; Koyani B; Setliff I; Thakur M; Duan D; Breazna A; Wang F; Lim WK; Halasz G; Urbanek J; Patel Y; Atwal GS; Hamilton JD; Stuart S; Levy O; Avbersek A; Alaj R; Hamon SC; Harari O
    Elife; 2024 Apr; 13():. PubMed ID: 38686919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next Steps in Wearable Technology and Community Ambulation in Multiple Sclerosis.
    Frechette ML; Meyer BM; Tulipani LJ; Gurchiek RD; McGinnis RS; Sosnoff JJ
    Curr Neurol Neurosci Rep; 2019 Sep; 19(10):80. PubMed ID: 31485896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of wearable technology to assess gait and mobility post-stroke: a systematic review.
    Peters DM; O'Brien ES; Kamrud KE; Roberts SM; Rooney TA; Thibodeau KP; Balakrishnan S; Gell N; Mohapatra S
    J Neuroeng Rehabil; 2021 Apr; 18(1):67. PubMed ID: 33882948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait Assessment Using Wearable Sensor-Based Devices in People Living with Dementia: A Systematic Review.
    Weizman Y; Tirosh O; Beh J; Fuss FK; Pedell S
    Int J Environ Res Public Health; 2021 Dec; 18(23):. PubMed ID: 34886459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovations and pitfalls in the use of wearable devices in the prevention and rehabilitation of running related injuries.
    Willy RW
    Phys Ther Sport; 2018 Jan; 29():26-33. PubMed ID: 29172095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis.
    Hickey A; Del Din S; Rochester L; Godfrey A
    Physiol Meas; 2017 Jan; 38(1):N1-N15. PubMed ID: 27941238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Ambulatory Gait Analysis in Walking and Running Using Machine Learning Models.
    Zhang H; Guo Y; Zanotto D
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):191-202. PubMed ID: 31831428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of wearable devices and objective gait analysis for the assessment and monitoring of patients with lumbar spinal stenosis: systematic review.
    Chakravorty A; Mobbs RJ; Anderson DB; Rooke K; Phan K; Yoong N; Maharaj M; Choy WJ
    BMC Musculoskelet Disord; 2019 Jun; 20(1):288. PubMed ID: 31202276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions.
    Ahamed NU; Kobsar D; Benson L; Clermont C; Kohrs R; Osis ST; Ferber R
    PLoS One; 2018; 13(9):e0203839. PubMed ID: 30226903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Wearable Devices with Biofeedback on Biomechanical Performance of Running-A Systematic Review.
    Giraldo-Pedroza A; Lee WC; Lam WK; Coman R; Alici G
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33228137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consensus based framework for digital mobility monitoring.
    Kluge F; Del Din S; Cereatti A; Gaßner H; Hansen C; Helbostad JL; Klucken J; Küderle A; Müller A; Rochester L; Ullrich M; Eskofier BM; Mazzà C;
    PLoS One; 2021; 16(8):e0256541. PubMed ID: 34415959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in walking and running gait in children with and without developmental coordination disorder: A systematic review and meta-analysis.
    Smith M; Ward E; Williams CM; Banwell HA
    Gait Posture; 2021 Jan; 83():177-184. PubMed ID: 33160227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the Validity and Utility of Wearable Technology for Continuously Monitoring Patients in a Hospital Setting: Systematic Review.
    Patel V; Orchanian-Cheff A; Wu R
    JMIR Mhealth Uhealth; 2021 Aug; 9(8):e17411. PubMed ID: 34406121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association Between Temporal Spatial Parameters and Overuse Injury History in Runners: A Systematic Review and Meta-analysis.
    Brindle RA; Taylor JB; Rajek C; Weisbrod A; Ford KR
    Sports Med; 2020 Feb; 50(2):331-342. PubMed ID: 31643019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearables for running gait analysis: A study protocol.
    Mason R; Godfrey A; Barry G; Stuart S
    PLoS One; 2023; 18(9):e0291289. PubMed ID: 37695752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.