BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 29730593)

  • 1. Synergistic effect between sulfide mineral and acidophilic bacteria significantly promoted Cr(VI) reduction.
    Gan M; Li J; Sun S; Ding J; Zhu J; Liu X; Qiu G
    J Environ Manage; 2018 Aug; 219():84-94. PubMed ID: 29730593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hexavalent chromium remediation based on the synergistic effect between chemoautotrophic bacteria and sulfide minerals.
    Gan M; Gu C; Ding J; Zhu J; Liu X; Qiu G
    Ecotoxicol Environ Saf; 2019 May; 173():118-130. PubMed ID: 30771655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrite-Based Cr(VI) Reduction Driven by Chemoautotrophic Acidophilic Bacteria.
    Liu X; Wu H; Gan M; Qiu G
    Front Microbiol; 2019; 10():3082. PubMed ID: 32117078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active destruction of pyrite passivation by ozone oxidation of a biotic leaching system.
    Lv X; Zhao H; Zhang Y; Yan Z; Zhao Y; Zheng H; Liu W; Xie J; Qiu G
    Chemosphere; 2021 Aug; 277():130335. PubMed ID: 33780674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of low molecular weight organic acids on pyrite dissolution in aqueous systems: implications for catalytic chromium (VI) treatment.
    Kantar C
    Water Sci Technol; 2016; 74(1):99-109. PubMed ID: 27386987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure.
    Kantar C; Ari C; Keskin S
    Water Res; 2015 Jun; 76():66-75. PubMed ID: 25792435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Cr(VI) reduction by indigenous bacterial consortia using natural pyrite: A detailed study to elucidate the mechanisms involved in the highly efficient and possible sustainable system.
    Zhang K; Zhu Z; Peng M; Tian L; Chen Y; Zhu J; Gan M
    Chemosphere; 2022 Dec; 308(Pt 1):136228. PubMed ID: 36041522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans.
    Kocaman AT; Cemek M; Edwards KJ
    Can J Microbiol; 2016 Aug; 62(8):629-42. PubMed ID: 27332502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cr(VI) removal from aqueous systems using pyrite as the reducing agent: batch, spectroscopic and column experiments.
    Kantar C; Ari C; Keskin S; Dogaroglu ZG; Karadeniz A; Alten A
    J Contam Hydrol; 2015 Mar; 174():28-38. PubMed ID: 25644191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can Sulfate Be the First Dominant Aqueous Sulfur Species Formed in the Oxidation of Pyrite by
    Borilova S; Mandl M; Zeman J; Kucera J; Pakostova E; Janiczek O; Tuovinen OH
    Front Microbiol; 2018; 9():3134. PubMed ID: 30619202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidophilic Iron- and Sulfur-Oxidizing Bacteria,
    Yi Q; Wu S; Southam G; Robertson L; You F; Liu Y; Wang S; Saha N; Webb R; Wykes J; Chan TS; Lu YR; Huang L
    Environ Sci Technol; 2021 Jun; 55(12):8020-8034. PubMed ID: 34043324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species.
    Bellenberg S; Barthen R; Boretska M; Zhang R; Sand W; Vera M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1435-49. PubMed ID: 25381488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrite oxidation by hexavalent chromium: investigation of the chemical processes by monitoring of aqueous metal species.
    Demoisson F; Mullet M; Humbert B
    Environ Sci Technol; 2005 Nov; 39(22):8747-52. PubMed ID: 16323772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of Acidithiobacillus ferrooxidans YY2 and its application in the biodesulfurization of coal.
    Yang X; Wang S; Liu Y; Zhang Y
    Can J Microbiol; 2015 Jan; 61(1):65-71. PubMed ID: 25496139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential surface modification mechanism of chalcopyrite and pyrite by Thiobacillus ferrooxidans and its response to bioflotation.
    Su C; Cai J; Zheng Q; Peng R; Yu X; Shen P; Liu D
    Bioresour Technol; 2024 May; 399():130619. PubMed ID: 38552857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions.
    Okibe N; Johnson DB
    Biotechnol Bioeng; 2004 Sep; 87(5):574-83. PubMed ID: 15352055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of pyrite oxidation through forming biogenic K-jarosite coatings to prevent acid mine drainage production.
    Hong M; Wang J; Yang B; Liu Y; Sun X; Li L; Yu S; Liu S; Kang Y; Wang W; Qiu G
    Water Res; 2024 Mar; 252():121221. PubMed ID: 38324985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Nitrate Ions on Acidithiobacillus ferrooxidans-Mediated Bio-oxidation of Ferrous Ions and Pyrite.
    Liu FW; Qiao XX; Xing K; Shi J; Zhou LX; Dong Y; Bi WL; Zhang J
    Curr Microbiol; 2020 Jun; 77(6):1070-1080. PubMed ID: 32036394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Bioshrouding": a novel approach for securing reactive mineral tailings.
    Johnson DB; Yajie L; Okibe N
    Biotechnol Lett; 2008 Mar; 30(3):445-9. PubMed ID: 17975731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.
    Sand W; Gehrke T
    Res Microbiol; 2006; 157(1):49-56. PubMed ID: 16431087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.