BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 29730705)

  • 1. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland.
    Rana V; Maiti SK
    Environ Monit Assess; 2018 May; 190(6):328. PubMed ID: 29730705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal Accumulation Strategies of Emergent Plants in Natural Wetland Ecosystems Contaminated with Coke-Oven Effluent.
    Rana V; Maiti SK
    Bull Environ Contam Toxicol; 2018 Jul; 101(1):55-60. PubMed ID: 29761304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of an integrated poultry and aquaculture wastewater using sub-surface constructed wetland planted with
    Akadiri SA; Dada PO; Badejo AA; Adeosun OJ; Ogunrinde AT; Faloye OT
    Int J Phytoremediation; 2024 May; 26(7):1133-1143. PubMed ID: 38140944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of Landfill Leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in Constructed Wetlands.
    Madera-Parra CA; Peña-Salamanca EJ; Peña MR; Rousseau DP; Lens PN
    Int J Phytoremediation; 2015; 17(1-6):16-24. PubMed ID: 25174421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater.
    Kumari M; Tripathi BD
    Ecotoxicol Environ Saf; 2015 Feb; 112():80-6. PubMed ID: 25463857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation potential of Cd and Zn by wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis Lam. and Typha angustifolia L. grown in hydroponics.
    Chayapan P; Kruatrachue M; Meetam M; Pokethitiyook P
    J Environ Biol; 2015 Sep; 36(5):1179-83. PubMed ID: 26521563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Amendments on Growth and Uptake of Cd and Zn by Wetland Plants, Typha angustifolia and Colocasia esculenta from Contaminated Sediments.
    Chayapan P; Kruatrachue M; Meetam M; Pokethitiyook P
    Int J Phytoremediation; 2015; 17(9):900-6. PubMed ID: 25831275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of heavy metals on nitrogen and oxygen demand removal in constructed wetlands.
    Lim PE; Tay MG; Mak KY; Mohamed N
    Sci Total Environ; 2003 Jan; 301(1-3):13-21. PubMed ID: 12493181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant.
    Kumar V; Chopra AK
    Environ Technol; 2018 Jan; 39(1):12-23. PubMed ID: 28278781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertical subsurface flow constructed wetlands for the removal of petroleum contaminants from secondary refinery effluent at the Kaduna refining plant (Kaduna, Nigeria).
    Mustapha HI; van Bruggen HJJA; Lens PNL
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30451-30462. PubMed ID: 30168108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of arsenic in submerged soil by wetland plants.
    Jomjun N; Siripen T; Maliwan S; Jintapat N; Prasak T; Somporn C; Petch P
    Int J Phytoremediation; 2011 Jan; 13(1):35-46. PubMed ID: 21598766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment efficiency of a hybrid constructed wetland system for municipal wastewater and its suitability for crop irrigation.
    Ali Z; Mohammad A; Riaz Y; Quraishi UM; Malik RN
    Int J Phytoremediation; 2018 Sep; 20(11):1152-1161. PubMed ID: 30156922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of horizontal subsurface flow constructed wetlands to treat reverse osmosis concentrate of rolling wastewater.
    Xu J; Zhao G; Huang X; Guo H; Liu W
    Int J Phytoremediation; 2017 Mar; 19(3):262-269. PubMed ID: 27712090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Pb concentration stress on Typha latifolia growth and Pb removal in microcosm wetlands.
    Han J; Chen F; Zhou Y; Wang C
    Water Sci Technol; 2015; 71(11):1734-41. PubMed ID: 26038940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation capability of Typha latifolia L. to uptake sediment toxic elements in the largest coastal wetland of the Persian Gulf.
    Haghnazar H; Sabbagh K; Johannesson KH; Pourakbar M; Aghayani E
    Mar Pollut Bull; 2023 Mar; 188():114699. PubMed ID: 36764150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Livestock Wastewater Treatment in Constructed Wetlands for Agriculture Reuse.
    Dias S; Mucha AP; Duarte Crespo R; Rodrigues P; Almeida CMR
    Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33228045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel.
    Sricoth T; Meeinkuirt W; Pichtel J; Taeprayoon P; Saengwilai P
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5344-5358. PubMed ID: 29209971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria.
    Mustapha HI; van Bruggen JJA; Lens PNL
    Int J Phytoremediation; 2018 Jan; 20(1):44-53. PubMed ID: 28598201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aquatic macrophytes mediated remediation of toxic metals from moderately contaminated industrial effluent.
    Saraswat S; Rai DJPN
    Int J Phytoremediation; 2018 Jul; 20(9):876-884. PubMed ID: 29873544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.