These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29730752)

  • 1. Unilateral wrist extension training after stroke improves strength and neural plasticity in both arms.
    Sun Y; Ledwell NMH; Boyd LA; Zehr EP
    Exp Brain Res; 2018 Jul; 236(7):2009-2021. PubMed ID: 29730752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-intensity unilateral dorsiflexor resistance training results in bilateral neuromuscular plasticity after stroke.
    Dragert K; Zehr EP
    Exp Brain Res; 2013 Mar; 225(1):93-104. PubMed ID: 23196803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhythmic arm cycling training improves walking and neurophysiological integrity in chronic stroke: the arms can give legs a helping hand in rehabilitation.
    Kaupp C; Pearcey GEP; Klarner T; Sun Y; Cullen H; Barss TS; Zehr EP
    J Neurophysiol; 2018 Mar; 119(3):1095-1112. PubMed ID: 29212917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anodal tDCS applied during strength training enhances motor cortical plasticity.
    Hendy AM; Kidgell DJ
    Med Sci Sports Exerc; 2013 Sep; 45(9):1721-9. PubMed ID: 23470308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilateral movements increase sustained extensor force in the paretic arm.
    Kang N; Cauraugh JH
    Disabil Rehabil; 2018 Apr; 40(8):912-916. PubMed ID: 28637125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-term strength training does not change cortical voluntary activation.
    Lee M; Gandevia SC; Carroll TJ
    Med Sci Sports Exerc; 2009 Jul; 41(7):1452-60. PubMed ID: 19516155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No evidence of neural adaptations following chronic unilateral isometric training of the intrinsic muscles of the hand: a randomized controlled study.
    Manca A; Ginatempo F; Cabboi MP; Mercante B; Ortu E; Dragone D; De Natale ER; Dvir Z; Rothwell JC; Deriu F
    Eur J Appl Physiol; 2016 Oct; 116(10):1993-2005. PubMed ID: 27485469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Substrates of Motor Recovery in Severely Impaired Stroke Patients With Hand Paralysis.
    Harris-Love ML; Chan E; Dromerick AW; Cohen LG
    Neurorehabil Neural Repair; 2016 May; 30(4):328-38. PubMed ID: 26163204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke.
    Chang JJ; Tung WL; Wu WL; Huang MH; Su FC
    Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unilateral strength training increases voluntary activation of the opposite untrained limb.
    Lee M; Gandevia SC; Carroll TJ
    Clin Neurophysiol; 2009 Apr; 120(4):802-8. PubMed ID: 19230754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training.
    Kidgell DJ; Frazer AK; Daly RM; Rantalainen T; Ruotsalainen I; Ahtiainen J; Avela J; Howatson G
    Neuroscience; 2015 Aug; 300():566-75. PubMed ID: 26037804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hand dominance and side of stroke affect rehabilitation in chronic stroke.
    McCombe Waller S; Whitall J
    Clin Rehabil; 2005 Aug; 19(5):544-51. PubMed ID: 16119411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Single Bout of High-Intensity Interval Training Improves Motor Skill Retention in Individuals With Stroke.
    Nepveu JF; Thiel A; Tang A; Fung J; Lundbye-Jensen J; Boyd LA; Roig M
    Neurorehabil Neural Repair; 2017 Aug; 31(8):726-735. PubMed ID: 28691645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-education of wrist extensor strength is not influenced by non-dominant training in right-handers.
    Coombs TA; Frazer AK; Horvath DM; Pearce AJ; Howatson G; Kidgell DJ
    Eur J Appl Physiol; 2016 Sep; 116(9):1757-69. PubMed ID: 27423912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of cortical plastic changes in wrist muscles by paired associative stimulation in the recovery phase of stroke patients.
    Castel-Lacanal E; Marque P; Tardy J; de Boissezon X; Guiraud V; Chollet F; Loubinoux I; Moreau MS
    Neurorehabil Neural Repair; 2009 May; 23(4):366-72. PubMed ID: 19060132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of enhanced cutaneous sensory input on interlimb strength transfer of the wrist extensors.
    Barss TS; Klarner T; Sun Y; Inouye K; Zehr EP
    Physiol Rep; 2020 Mar; 8(6):e14406. PubMed ID: 32222042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory enhancement amplifies interlimb cutaneous reflexes in wrist extensor muscles.
    Sun Y; Zehr EP
    J Neurophysiol; 2019 Nov; 122(5):2085-2094. PubMed ID: 31509473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength Training for Skeletal Muscle Endurance after Stroke.
    Ivey FM; Prior SJ; Hafer-Macko CE; Katzel LI; Macko RF; Ryan AS
    J Stroke Cerebrovasc Dis; 2017 Apr; 26(4):787-794. PubMed ID: 27865696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Intensity, Unilateral Resistance Training of a Non-Paretic Muscle Group Increases Active Range of Motion in a Severely Paretic Upper Extremity Muscle Group after Stroke.
    Urbin MA; Harris-Love ML; Carter AR; Lang CE
    Front Neurol; 2015; 6():119. PubMed ID: 26074871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ipsilateral Motor Pathways and Transcallosal Inhibition During Lower Limb Movement After Stroke.
    Cleland BT; Madhavan S
    Neurorehabil Neural Repair; 2021 Apr; 35(4):367-378. PubMed ID: 33703951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.